We explore finite size effects in the crystallization of a bulk metallic glass with nm-scale dimensions. Nanorods of Pt57.5Cu14.7Ni5.3P22.5 are produced by thermoplastic extrusion of supercooled liquid through a nanoporous template. The nanorods exhibit remarkable differences in their crystallization behavior above the glass transition. Crystallization for 100 and 200 nm diameter nanorods occurred at 6 and 24 °C lower, respectively, than the nominal crystallization temperature for bulk material while the glass transition temperatures were unchanged from the bulk value. Size dependent crystallization kinetics is discussed within a framework of classical nucleation theory, as well as possible shear and surface-induced effects.

1.
G.
Kumar
,
H. X.
Tang
, and
J.
Schroers
,
Nature
457
(
7231
),
868
872
(
2009
).
2.
M.
Carmo
,
R. C.
Sekol
,
S. Y.
Ding
,
G.
Kumar
,
J.
Schroers
, and
A. D.
Taylor
,
ACS Nano
5
(
4
),
2979
2983
(
2011
).
3.
R. C.
Sekol
,
G.
Kumar
,
M.
Carmo
,
F.
Gittleson
,
N.
Hardesty-Dyck
,
S.
Mukherjee
,
J.
Schroers
, and
A. D.
Taylor
,
Small
9
,
2081
2085
(
2013
).
4.
G.
Kumar
,
J.
Blawzdziewicz.
and
J.
Schroers
,
Nanotechnology
24
(
10
),
105301
(
2013
).
5.
G.
Kumar
,
A.
Desai
, and
J.
Schroers
,
Adv. Mater.
23
(
4
),
461
476
(
2011
).
6.
S.
Mukherjee
,
R. C.
Sekol
,
M.
Carmo
,
E. I.
Altman
,
A. D.
Taylor
, and
J.
Schroers
,
Adv. Funct. Mater.
23
(
21
),
2784
(
2013
).
7.
R. C.
Sekol
,
M.
Carmo
,
G.
Kumar
,
F. S.
Gittleson
,
G.
Doubek
,
K.
Sun
,
J.
Schroers
, and
A. D.
Taylor
,
Int. J. Hydrogen Energy
38
(
26
),
11248
11255
(
2013
).
8.
D. C.
Jang
and
J. R.
Greer
,
Nature Mater.
9
(
3
),
215
219
(
2010
).
9.
C. A.
Volkert
,
A.
Donohue
, and
F.
Spaepen
,
J. Appl. Phys.
103
(
8
),
083539
(
2008
).
10.
H.
Guo
,
P. F.
Yan
,
Y. B.
Wang
,
J.
Tan
,
Z. F.
Zhang
,
M. L.
Sui
, and
E.
Ma
,
Nature Mater.
6
(
10
),
735
739
(
2007
).
11.
L.
Tian
,
Y. Q.
Cheng
,
Z. W.
Shan
,
J.
Li
,
C. C.
Wang
,
X. D.
Han
,
J.
Sun
, and
E.
Ma
,
Nature Commun.
3
,
609
(
2012
).
12.
D. J.
Magagnosc
,
R.
Ehrbar
,
G.
Kumar
,
M. R.
He
,
J.
Schroers
and
D. S.
Gianola
,
Sci. Rep.
3
,
1096
(
2013
).
13.
J.
Schroers
and
W. L.
Johnson
,
Appl. Phys. Lett.
84
(
18
),
3666
3668
(
2004
).
14.
Z.
Shao
,
M.
Gopinadhan
,
G.
Kumar
,
S.
Mukherjee
,
Y.
Liu
,
C.
O'Hern
,
J.
Schroers
, and
C. O.
Osuji
,
Appl. Phys. Lett.
102
,
221901
(
2013
).
15.
M.
Avrami
,
J. Chem. Phys.
7
(
12
),
1103
1112
(
1939
).
16.
D. R.
Uhlmann
,
J. Non-Cryst. Solids
7
(
4
),
337
348
(
1972
).
17.
G.
Brandeis
and
C.
Jaupart
,
Contrib. Mineral. Petrol.
96
(
1
),
24
34
(
1987
).
18.
J.
Bokeloh
,
R. E.
Rozas
,
J.
Horbach
, and
G.
Wilde
,
Phys. Rev. Lett.
107
(
14
),
145701
(
2011
).
19.
T.
Li
,
D.
Donadio
,
L. M.
Ghiringhelli
, and
G.
Galli
,
Nature Mater.
8
(
9
),
726
730
(
2009
).
20.
B.
Lohwongwatana
,
J.
Schroers
, and
W. L.
Johnson
,
Phys. Rev. Lett.
96
(
7
),
075503
(
2006
).
21.
K. K.
Nanda
,
S. N.
Sahu
, and
S. N.
Behera
,
Phys. Rev. A
66
(
1
),
013208
(
2002
).
22.
W. H.
Wang
,
Prog. Mater. Sci.
52
(
4
),
540
596
(
2007
).
23.
H.
Choi-Yim
,
R.
Busch
, and
W. L.
Johnson
,
J. Appl. Phys.
83
(
12
),
7993
7997
(
1998
).
24.
T.
Waniuk
,
J.
Schroers
, and
W. L.
Johnson
,
Phys. Rev. B
67
(
18
),
184203
(
2003
).
25.
A.
Takeuchi
,
S.
Ranganathan
,
B. S.
Murty
, and
A.
Inoue
,
Rev. Adv. Mater. Sci.
18
(
1
),
56
60
(
2008
), available at http://195.19.206.10/e-journals/RAMS/no_11808/takeuchi.pdf
You do not currently have access to this content.