Manganese-doped SnO2 nanocrystals and nanowires with diameters below SnO2 Bohr radius were synthesized by solution methods. X-ray absorption studies reveal that dopant ions are substitutionally incorporated as Mn2+ and Mn3+. Mn2+ is the dominant species at low doping levels, but the fraction of Mn3+ increases with doping concentration. Room-temperature ferromagnetism with the saturation moment of 0.27 μB/Mn is observed for nanocrystalline films containing high fraction of Mn2+ dopant, which is associated with hybridization of Mn2+ d-levels with a donor-impurity band. These results imply the possibility of manipulating magnetic interactions via dopant electronic structure and quantum confinement of the host lattice.

1.
D. D.
Awschalom
,
L. C.
Bassett
,
A. S.
Dzurak
,
E. L.
Hu
, and
J. R.
Petta
,
Science
339
,
1174
(
2013
).
2.
S. A.
Wolf
,
D. D.
Awschalom
,
R. A.
Buhrman
,
J. M.
Daughton
,
S.
von Molnar
,
M. L.
Roukes
,
A. Y.
Chtchelkanova
, and
D. M.
Treger
,
Science
294
,
1488
(
2001
).
3.
S. J.
Pearton
,
C. R.
Abernathy
,
M. E.
Overberg
,
G. T.
Thaler
,
D. P.
Norton
,
N.
Theodoropoulou
,
A. F.
Hebard
,
Y. D.
Park
,
F.
Ren
,
J.
Kim
, and
L. A.
Boatner
,
J. Appl. Phys.
93
,
1
(
2003
).
4.
Y.
Matsumoto
,
M.
Murakami
,
T.
Shono
,
T.
Hasegawa
,
T.
Fukumura
,
M.
Kawasaki
,
P.
Ahmet
,
T.
Chikyow
,
S.
Koshihara
, and
H.
Koinuma
,
Science
291
,
854
(
2001
).
5.
T.
Dietl
,
H.
Ohno
,
F.
Matsukura
,
J.
Cibet
, and
D.
Ferrand
,
Science
287
,
1019
(
2000
).
6.
C.
Kilic
and
A.
Zunger
,
Phys. Rev. Lett.
88
,
095501
(
2002
).
7.
R. E.
Presley
,
C. L.
Munsee
,
C.-H.
Park
,
D.
Hong
,
J. F.
Wager
, and
D. A.
Keszler
,
J. Phys. D: Appl. Phys.
37
,
2810
(
2004
).
8.
C. B.
Fitzgerald
,
M.
Venkatesan
,
A. P.
Douvalis
,
S.
Huber
,
J. M. D.
Coey
, and
T.
Bakas
,
J. Appl. Phys.
95
,
7390
(
2004
).
9.
A. M. A.
Hakeem
,
J. Magn. Magn. Mater.
324
,
95
(
2012
).
10.
H.
Kimura
,
T.
Fukumura
,
M.
Kawasaki
,
K.
Inaba
,
T.
Hasegawa
, and
H.
Koinuma
,
Appl. Phys. Lett.
80
,
94
(
2002
).
11.
A.
Espinosa
,
N.
Sanchez
,
J.
Sanchez-Marcos
,
A.
de Andres
, and
M. C.
Munoz
,
J. Phys. Chem. C
115
,
24054
(
2011
).
12.
A.
Sundaresan
,
R.
Bhargavi
,
N.
Rangarajan
,
U.
Siddesh
, and
C. N. R.
Rao
,
Phys. Rev. B
74
,
161306
R
(
2006
).
13.
N.
Dave
,
B. G.
Pautler
,
S. S.
Farvid
, and
P. V.
Radovanovic
,
Nanotechnology
21
,
134023
(
2010
).
14.
X.
Xu
,
J.
Zhuang
, and
X.
Wang
,
J. Am. Chem. Soc.
130
,
12527
(
2008
).
15.
J.
Chi
,
H.
Ge
,
J.
Wang
,
Y.
Zuo
, and
L.
Zhang
,
J. Appl. Phys.
110
,
083907
(
2011
).
16.
A. B. P.
Lever
,
Inorganic Electronic Spectroscopy
, 2nd ed. (
Elsevier Science Publishers
,
Amsterdam
,
1984
).
17.
S. S.
Farvid
,
N.
Dave
,
T.
Wang
, and
P. V.
Radovanovic
,
J. Phys. Chem. C
113
,
15928
(
2009
).
18.
W. C.
Las
,
D.
Gouvea
, and
W.
Sano
,
Solid State Sci.
1
,
331
(
1999
).
19.
R.-A.
Eichel
,
Phys. Chem. Chem. Phys.
13
,
368
(
2011
).
20.
P. V.
Radovanovic
and
D. R.
Gamelin
,
Phys. Rev. Lett.
91
,
157202
(
2003
).
21.
L.
Ju
,
T.
Sabergharesou
,
K. G.
Stamplecoskie
,
M.
Hegde
,
T.
Wang
,
N. A.
Combe
,
H.
Wu
, and
P. V.
Radovanovic
,
J. Am. Chem. Soc.
134
,
1136
(
2012
).
22.
S. S.
Farvid
,
M.
Hegde
, and
P. V.
Radovanovic
,
Chem. Mater.
25
,
233
244
(
2013
).
23.
J. M. D.
Coey
,
M.
Venkatesan
, and
C. B.
Fitzgerald
,
Nature Mater.
4
,
173
(
2005
).
24.
M.
Hegde
,
S. S.
Farvid
,
I. D.
Hosein
, and
P. V.
Radovanovic
,
ACS Nano
5
,
6365
(
2011
).
25.
S. S.
Farvid
,
M.
Hegde
,
I. D.
Hosein
, and
P. V.
Radovanovic
,
Appl. Phys. Lett.
99
,
222504
(
2011
).
26.
K.
Chang
and
F. M.
Peeters
,
Phys. Rev. B
68
,
205320
(
2003
).
27.
R.
Oszwaldowski
,
I.
Zutic
, and
A. G.
Petukhov
,
Phys. Rev. Lett.
106
,
177201
(
2011
).
You do not currently have access to this content.