Superelasticity is very common in shape memory alloys but is rather difficult to realize in ferroelectric ceramics and had never appeared in normal ferroelectric single crystals. Here we show that guided by a proposed incremental 90° domain switching criterion, large and electric-field-tunable superelastic strains up to 0.85% has been realized in a specially poled BaTiO3 crystal cube via compression loading/unloading with a positive dc bias electric field along the poling direction. Moreover, the tunable superelasticity has a large damping factor of up to 0.76, which is very promising in intelligent damping devices.

1.
K.
Otsuka
and
X.
Ren
,
Prog. Mater. Sci.
50
,
511
528
(
2005
).
2.
H. E.
Karaca
,
I.
Karaman
,
B.
Basaran
,
Y.
Ren
,
Y. I.
Chumlyakov
, and
H. J.
Maier
,
Adv. Funct. Mater.
19
,
983
997
(
2009
).
3.
H. E.
Karaca
,
I.
Karaman
,
B.
Basaran
,
Y. I.
Chumlyakov
, and
H. J.
Maier
,
Acta Mater.
54
,
233
245
(
2006
).
4.
C.
Okawara
and
A.
Amin
,
Appl. Phys. Lett.
95
(
7
),
072902
(
2009
).
5.
E. A.
McLaughlin
,
T. Q.
Liu
, and
C. S.
Lynch
,
Acta Mater.
53
,
4001
4008
(
2005
).
6.
M.
Wun-Fogle
,
J. B.
Restorff
,
A. E.
Clark
, and
J.
Snodgrass
,
IEEE Trans. Magn.
39
,
3408
3410
(
2003
).
7.
Y. M.
Pei
and
D. N.
Fang
,
Chin. Phys. Lett.
24
(
6
),
1611
1613
(
2007
).
8.
A. B.
Schäufele
and
K. H.
Härdtl
,
J. Am. Ceram. Soc.
79
(
10
),
2637
2640
(
1996
).
9.
P. M.
Chaplya
and
G. P.
Carman
,
J. Appl. Phys.
92
(
3
),
1504
1510
(
2002
).
10.
D. Y.
Zhou
,
M.
Kamlah
, and
D.
Munz
,
J. Am. Ceram. Soc.
88
(
4
),
867
874
(
2005
).
11.
M. W.
Burkart
and
T. A.
Read
,
Trans. AIME
197
,
1516
(
1953
).
12.
P.
Wollants
,
M.
De Bonte
, and
J. R.
Roos
,
Z. Metallkd.
70
,
113
(
1979
).
13.
S. C.
Hwang
,
C. S.
Lynch
, and
R. M.
McMeeking
,
Acta Metall. Mater.
43
(
5
),
2073
2084
(
1995
).
14.
E. G.
Fesenko
,
V. G.
Gavrilyatchenko
,
A. F.
Semenchev
, and
S. M.
Yufatova
,
Ferroelectrics
63
,
289
298
(
1985
).
15.
T.
Leist
,
K. G.
Webber
,
W.
Jo
,
T.
Granzow
,
E.
Aulbach
,
J.
Suffner
, and
J.
Rödel
,
J. Appl. Phys.
109
(
5
),
054109
(
2011
).
16.
M. H.
Garrett
,
J. Y.
Chang
,
H. P.
Jenssen
, and
C.
Warde
,
Ferroelectrics
120
,
167
173
(
1991
).
17.
See supplementary material at http://dx.doi.org/10.1063/1.4795330 for P-E hysteresis loop and butterfly curve of a poled BaTiO3 crystal, testing setup, domain switching criterion, and mechanical depolarization curves at a dc bias field of 800 V/mm.
18.
M.
Belkaoumi
,
M.
Maglione
, and
B.
Jannot
,
Ferroelectrics
108
,
141
146
(
1990
).
19.
S.
Takahashi
,
Ferroelectrics
41
,
143
156
(
1982
).
20.
Y. W.
Li
and
F. X.
Li
, “Energy dissipation of domain switching in ferroelectrics” (unpublished).
21.
G.
Arlt
,
J. Mater. Sci.
25
,
2655
2666
(
1990
).
22.
U.
Rabe
, “
Atomic force acoustic microscopy
,” in
Applied Scanning Probe Methods
, edited by
B.
Bushan
and
H.
Fuchs
(
Springer
,
Berlin
,
2006
), Vol. II, pp.
33
90
.
23.
Y. W.
Li
and
F. X.
Li
, “Ultra-high actuation strain in BaTiO3 crystal via electromechanical domain switching” (unpublished).

Supplementary Material

You do not currently have access to this content.