We demonstrate optically pumped polymer band-edge lasers based on a two-dimensional photonic crystal slab fabricated by nanoimprint lithography (NIL). Lasing was obtained at the photonic band-edge, where the light exhibits a low group velocity at the Γ point of the triangular lattice photonic crystal band structure. The active medium was composed of a dye chromophore-loaded polymer matrix directly patterned in a single step by nanoimprint lithography. Plane-wave and finite difference time domain algorithms were used to predict experimental lasing frequencies and the lasing thresholds obtained at different Γ points. A low laser threshold of 3 μJ/mm2 was achieved in a defect-free photonic crystal thus showing the suitability of nanoimprint lithography to produce cost-efficient optically pumped lasers.

1.
T.
Rabe
,
M.
Hoping
,
D.
Schneider
,
E.
Becker
,
H. H.
Johannes
,
W.
Kowalsky
,
T.
Weimann
,
J.
Wang
,
P.
Hinze
,
B. S.
Nehls
,
U.
Scherf
,
T.
Farrell
, and
T.
Riedl
,
Adv. Funct. Mater.
15
,
1188
(
2005
).
2.
P.
Gorrn
,
T.
Rabe
,
T.
Riedl
,
W.
Kowalsky
,
F.
Galbrecht
, and
U.
Scherf
,
Appl. Phys. Lett.
89
,
161113
(
2006
).
3.
H.
Nakanotani
,
S.
Akiyama
,
D.
Ohnishi
,
M.
Moriwake
,
M.
Yahiro
,
T.
Yoshihara
,
S.
Tobita
, and
C.
Adachi
,
Adv. Funct. Mater.
17
,
2328
(
2007
).
4.
J. R.
Lawrence
,
E. B.
Namdas
,
G. J.
Richards
,
P. L.
Burn
, and
I. D. W.
Samuel
,
Adv. Mater.
19
,
3000
(
2007
).
5.
I. D. W.
Samuel
and
G. A.
Turnbull
,
Chem. Rev.
107
,
1272
(
2007
).
6.
B. K.
Yap
,
R. D.
Xia
,
M.
Campoy-Quiles
,
P. N.
Stavrinou
, and
D. D. C.
Bradley
,
Nature Mater.
7
,
376
(
2008
).
7.
S.
Boscolo
,
M.
Midrio
, and
T. F.
Krauss
,
Opt. Lett.
27
,
1001
(
2002
).
8.
Z. X.
Qiang
,
W. D.
Zhou
, and
R. A.
Soref
,
Opt. Express
15
,
1823
1831
(
2007
).
9.
G.
Chen
and
J. U.
Kang
,
Opt. Lett.
30
,
1656
1658
(
2005
).
10.
D.
Englund
,
H.
Altug
,
I.
Fushman
, and
J.
Vuckovic
,
Appl. Phys. Lett.
91
,
071126
(
2007
).
11.
S. Y.
Chou
,
P. R.
Krauss
, and
P. J.
Resnstrom
,
Appl. Phys. Lett.
67
,
3114
(
1995
).
12.
A.
Genua
,
J. A.
Alduncín
,
J. A.
Pomposo
,
H.
Grande
,
N.
Kehagias
,
V.
Reboud
,
C. M.
Sotomayor
,
I.
Mondragon
, and
D.
Mecerreyes
,
Nanotechnology
18
,
215301
(
2007
).
13.
V.
Reboud
,
A. Z.
Khokhar
,
B.
Sepúlveda
,
D.
Dudek
,
T.
Kehoe
,
J.
Cuffe
,
N.
Kehagias
,
M.
Lira-Cantu
,
N.
Gadegaard
,
V.
Grasso
,
V.
Lambertini
and
C. M.
Sotomayor Torres
,
Nanoscale
4
,
3495
3500
(
2012
).
14.
S.-W.
Ahn
,
K.-D.
Lee
,
D.-H.
Kim
, and
S.-S.
Lee
,
IEEE Photon. Technol. Lett.
17
(
10
),
2122
2124
(
2005
).
15.
D.-H.
Kim
,
J.-G.
Im
,
S.-S.
Lee
,
S.-W.
Ahn
, and
K.-D.
Lee
,
IEEE Photon. Technol. Lett.
17
(
11
),
2352
2354
(
2005
).
16.
C. L. C.
Smith
,
J. U.
Lind
,
C. H.
Nielsen
,
M. B.
Christiansen
,
T.
Buss
,
N. B.
Larsen
, and
A.
Kristensen
,
Opt. Lett.
36
,
1392
1394
(
2011
).
17.
E. B.
Namdas
,
M.
Tong
,
P.
Ledochowitsch
,
S. R.
Mednick
,
J. D.
Yuen
,
D.
Moses
, and
A. J.
Heeger
,
Adv. Mater.
21
,
799
802
(
2009
).
18.
V.
Reboud
,
P.
Lovera
,
N.
Kehagias
,
M.
Zelsmann
,
C.
Schuster
,
F.
Reuther
,
G.
Gruetzner
,
G.
Redmond
, and
C. M.
Sotomayor Torres
,
Appl. Phys. Lett.
91
,
151101
(
2007
).
19.
V.
Reboud
,
N.
Kehagias
,
M.
Striccoli
,
T.
Placido
,
A.
Panniello
,
M. L.
Curri
,
M.
Zelsmann
,
F.
Reuther
,
G.
Gruetzner
, and
C. M.
Sotomayor Torres
,
J. Vac. Sci. Technol. B
25
,
2642
2644
(
2007
).
20.
N.
Kehagias
,
V.
Reboud
,
G.
Chansin
,
M.
Zelsmann
,
C.
Jeppesen
,
F.
Reuther
,
C.
Schuster
,
M.
Kubenz
,
G.
Gruetzner
, and
C. M.
Sotomayor Torres
,
J. Vac. Sci. Technol. B
24
,
3002
3005
(
2006
).
21.
F.-H.
Ko
,
L.-Y.
Weng
,
C.-J.
Ko
, and
T.-C.
Chu
,
Microelectron. Eng.
83
,
864
(
2006
).
22.
M.
Bender
,
M.
Otto
,
B.
Hadam
,
B.
Spangenberg
, and
H.
Kurz
,
Microelectron. Eng.
61–62
,
407
(
2002
).
23.
V. I.
Klimov
,
S. A.
Ivanov
,
J.
Nanda
,
M.
Achermann
,
I.
Bezel
,
J. A.
McGuire
, and
A.
Piryatinski
,
Nature
447
,
441
(
2007
).
You do not currently have access to this content.