Thin-film microcrystalline diamond micromechanical resonators with mechanical quality factor limited by thermoelastic dissipation in the diamond film are demonstrated. Surface micromachined double ended tuning fork resonators were fabricated from in-situ boron doped microcrystalline diamond films deposited using hot filament chemical vapor deposition. Time-domain thermoreflectance measurements show thermal conductivity of 110 W m−1 K−1 for heat transport through the thickness of the diamond film. Measurement of the quality factor of resonators spanning a frequency range 0.5–10 MHz shows a maximum Q = 81 646 and demonstrates good agreement with quality factor limited by thermoelastic dissipation using 100 W m−1 K−1 for the in-plane thermal conductivity of the diamond film.

1.
M.
Lutz
,
A.
Partridge
,
P.
Gupta
,
N.
Buchan
,
E.
Klaassen
,
J.
McDonald
, and
K.
Petersen
, in
Proc. Transducers 2007, International Solid-State Sensors, Actuators and Microsystems Conference
(IEEE,
2007
), p.
49
52
.
2.
J. R.
Clark
,
W. T.
Hsu
,
M. A.
Abdelmoneum
, and
C. T. C.
Nguyen
,
J. Microelectromech. Syst.
14
(
6
),
1298
(
2005
).
3.
A. A.
Trusov
,
I. P.
Prikhodko
,
S. A.
Zotov
, and
A. M.
Shkel
,
IEEE Sens. J.
11
(
11
),
2763
(
2011
).
4.
K. L.
Ekinci
and
M. L.
Roukes
,
Rev. Sci. Instrum.
76
(
6
),
061101
(
2005
).
5.
P.
Mohanty
,
D. A.
Harrington
,
K. L.
Ekinci
,
Y. T.
Yang
,
M. J.
Murphy
, and
M. L.
Roukes
,
Phys. Rev. B
66
(
8
),
085416
(
2002
).
6.
G. D.
Cole
,
I.
Wilson-Rae
,
K.
Werbach
,
M. R.
Vanner
, and
M.
Aspelmeyer
,
Nat. Commun.
2
,
231
(
2011
).
7.
C.
Zener
,
Phys. Rev.
53
(
1
),
90
(
1938
).
8.
C. M.
Zener
and
S.
Siegel
,
J. Phys. Colloid Chem.
53
(
9
),
1468
(
1948
).
9.
R.
Lifshitz
and
M. L.
Roukes
,
Phys. Rev. B
61
(
8
),
5600
(
2000
).
10.
P.
Ovartchaiyapong
,
L. M. A.
Pascal
,
B. A.
Myers
,
P.
Lauria
, and
A. C.
Bleszynski Jayich
,
Appl. Phys. Lett.
101
(
16
),
163505
(
2012
).
11.
N.
Sepulveda
,
D.
Aslam
, and
J. P.
Sullivan
,
Diamond Relat. Mater.
15
(
2–3
),
398
(
2006
).
12.
N.
Sepulveda
,
L.
Jing
,
D. M.
Aslam
, and
J. P.
Sullivan
,
J. Microelectromech. Syst.
17
(
2
),
473
(
2008
).
13.
V. P.
Adiga
,
A. V.
Sumant
,
S.
Suresh
,
C.
Gudeman
,
O.
Auciello
,
J. A.
Carlisle
, and
R. W.
Carpick
,
Phys. Rev. B
79
(
24
),
245403
(
2009
).
14.
M.
Akgul
,
R.
Schneider
,
Z.
Ren
,
G.
Chandler
,
V.
Yeh
, and
C. T.
Nguyen
, Proceedings of the IEEE International Frequency Control Symposium, San Francisco, CA,
2011
.
15.
H.
Najar
,
M.-L.
Chan
,
J.
Xie
,
L.
Lin
, and
D. A.
Horsley
, Proceedings of the IEEE International Frequency Control Symposium, Baltimore, MD,
2011
.
16.
D. T.
Morelli
,
T. M.
Hartnett
, and
C. J.
Robinson
,
Appl. Phys. Lett.
59
(
17
),
2112
(
1991
).
17.
J. E.
Graebner
,
S.
Jin
,
G. W.
Kammlott
,
J. A.
Herb
, and
C. F.
Gardinier
,
Nature
359
(
6394
),
401
(
1992
).
18.
J. E.
Graebner
,
M. E.
Reiss
,
L.
Seibles
,
T. M.
Hartnett
,
R. P.
Miller
, and
C. J.
Robinson
,
Phys. Rev. B
50
(
6
),
3702
(
1994
).
19.
W. L.
Wang
,
M. C.
Polo
,
G.
Sanchez
,
J.
Cifre
, and
J.
Esteve
,
J. Appl. Phys.
80
(
3
),
1846
(
1996
).
20.
W.
Gajewski
,
P.
Achatz
,
O. A.
Williams
,
K.
Haenen
,
E.
Bustarret
,
M.
Stutzmann
, and
J. A.
Garrido
,
Phys. Rev. B
79
(
4
),
045206
(
2009
).
21.
O. A.
Williams
,
A.
Kriele
,
J.
Hees
,
M.
Wolfer
,
W.
Müller-Sebert
, and
C. E.
Nebel
,
Chem. Phys. Lett.
495
(
1–3
),
84
(
2010
).
22.
D. G.
Cahill
,
Rev. Sci. Instrum.
75
(
12
),
5119
(
2004
).
23.
K.
Kang
,
Y.-K.
Koh
,
C.
Chiritescu
,
X.
Zheng
, and
D.-G.
Cahill
,
Rev. Sci. Instrum.
79
(
11
),
114901
(
2008
).
24.
S. S.
Verbridge
,
H. G.
Craighead
, and
J. M.
Parpia
,
Appl. Phys. Lett.
92
(
1
),
013112
(
2008
).
25.
H.
Hosaka
,
K.
Itao
, and
S.
Kuroda
,
Sens. Actuators, Phys.
49
(
1–2
),
87
(
1995
).
26.
Z.
Hao
,
A.
Erbil
, and
F.
Ayazi
,
Sens. Actuators, Phys.
109
(
1–2
),
156
(
2003
).
27.
A.
Ono
,
T.
Baba
,
H.
Funamoto
, and
A.
Nishikawa
,
Jpn. J. Appl. Phys., Part 2
25
(
10
),
L808
(
1986
).
You do not currently have access to this content.