The mechanical properties of metallic nanowires depend dramatically on the atmospheric conditions. Molecular-dynamics simulations with ReaxFF were conducted to study tensile elastic deformation of oxidized Al nanowires. The thin amorphous oxide shell formed around Al nanowires had a very low Young's modulus of 26 GPa, due to its low density and low Al-O coordination. Consequently, for diameters less than 100 nm, the composite Young's modulus of oxide-covered Al nanowires showed a size dependence implying that in this case “smaller is softer.” The model developed also explained the discrepancies in the reported modulus values of nanometer-scale Al thin films.

1.
M. D.
Uchic
,
D. M.
Dimiduk
,
J. N.
Florando
, and
W. D.
Nix
,
Science
305
,
986
(
2004
).
2.
Y.
Kondo
and
K.
Takayanagi
,
Phys. Rev. Lett.
79
,
3455
(
1997
).
3.
Y.
Kondo
and
K.
Takayanagi
,
Science
289
,
606
(
2000
).
4.
Z. L.
Wang
and
J.
Song
,
Science
312
,
242
(
2006
).
5.
X.
Wang
,
J.
Song
,
J.
Liu
, and
L. W.
Zhong
,
Science
316
,
102
(
2007
).
6.
M. T.
McDowell
,
A. M.
Leach
, and
K.
Gall
,
Nano Lett.
8
,
3613
(
2008
).
7.
C.-C.
Röhlig
,
M.
Niebelschütz
,
K.
Brueckner
,
K.
Tonisch
,
O.
Ambacher
, and
V.
Cimalla
,
Phys. Status Solidi B
247
,
2557
(
2010
).
8.
J.
Diao
,
K.
Gall
, and
M. L.
Dunn
,
J. Mech. Phys. Solids
52
,
1935
(
2004
).
9.
H.
Liang
,
M.
Upmanyu
, and
H.
Huang
,
Phys. Rev. B
71
,
241403
R
(
2005
).
10.
G. Y.
Jing
,
H. L.
Duan
,
X. M.
Sun
,
Z. S.
Zhang
,
J.
Xu
,
Y. D.
Li
,
J. X.
Wang
, and
D. P.
Yu
,
Phys. Rev. B
73
,
235409
(
2006
).
11.
R. E.
Miller
and
V. B.
Shenoy
,
Nanotechnology
11
,
139
(
2000
).
12.
H. S.
Park
,
W.
Cai
,
H. D.
Espinosa
, and
H.
Huang
,
MRS Bull.
34
,
178
(
2009
).
13.
Z. L.
Wang
,
Z. R.
Dai
,
R. P.
Gao
,
Z. G.
Bai
, and
J. L.
Gole
,
Appl. Phys. Lett.
77
,
3349
(
2000
).
14.
M. J.
Gordon
,
T.
Baron
,
F.
Dhalluin
,
P.
Gentile
, and
P.
Ferret
,
Nano Lett.
9
,
525
(
2009
).
15.
R. Z.
Bachrach
,
S. A.
Flodstrom
,
R. S.
Bauer
,
S. B. M.
Hastrom
, and
D. J.
Chadi
,
J. Vac. Sci. Technol.
15
,
488
(
1978
).
16.
A.
Bianconi
,
R. Z.
Bachrach
, and
S. A.
Flodström
,
Phys. Rev. B
19
,
3879
(
1979
).
17.
J.
Diao
,
K.
Gall
, and
M. L.
Dunn
,
Nature Mater.
2
,
656
(
2003
).
18.
H.
Ikeda
,
Y.
Qi
,
T.
Çagin
,
K.
Samwer
,
W. L.
Johnson
, and
W. A.
Goddard
 III
,
Phys. Rev. Lett.
82
,
2900
(
1999
).
19.
H. S.
Park
,
K.
Gall
, and
J. A.
Zimmerman
,
J. Mech. Phys. Solids
54
,
1862
(
2006
).
20.
E. Z.
Da Silva
,
A. J. R.
Da Silva
, and
A.
Fazzio
,
Phys. Rev. Lett.
87
,
256102
(
2001
).
21.
A. C. T.
van Duin
,
S.
Dasgupta
,
F.
Lorant
, and
W. A.
Goddard
 III
,
J. Phys. Chem. A
105
,
9396
(
2001
).
22.
K.
Chenoweth
,
A. C. T.
van Duin
, and
W. A.
Goddard
 III
,
J. Phys. Chem. A
112
,
1040
(
2008
).
23.
W. J.
Mortier
,
S. K.
Ghosh
, and
S.
Shankar
,
J. Am. Chem. Soc.
108
,
4315
(
1986
).
24.
Q.
Zhang
,
T.
Ç
ağin
,
A.
van Duin
,
W. A.
Goddard
 III
,
Y.
Qi
, and
L. G.
Hector
, Jr.
,
Phys. Rev. B
69
,
045423
(
2004
).
25.
A.
Strachan
,
E. M.
Kober
,
A. C. T.
van Duin
,
J.
Oxgaard
, and
W. A.
Goddard
,
J. Chem. Phys.
122
,
054502
(
2005
).
26.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
27.
See supplementary material at http://dx.doi.org/10.1063/1.4790181 for the "ffield.reax" input file that was tailored for the Al-O system including the ReaxFF nitramine description.
28.
The oxidation process was simulated in a reasonable MD time with the use of a high O2 pressure, considering that the use of a high O2 pressure was not expected to alter the final oxide properties based on Al oxidation experiments. When the pure Al-NWs were exposed to O2 gas at 188 atm (with 4 × 103 O2 molecules in the ∼10 × 10 × 10 nm3 simulation cell), the oxidation process started instantaneously at 200 K. For the 3.2 nm diameter NW, the oxidation simulation was carried out for 150 ps to reach a passive oxide layer, but shorter MD simulation time of 50 ps was sufficient to form a passive oxide layer for NWs with diameters >4.0 nm
.
29.
E. A.
Gulbransen
and
W. S.
Wysong
,
J. Phys. Chem.
51
,
1087
(
1947
).
30.
Wm. H.
Krueger
and
S. R.
Pollack
,
Surf. Sci.
30
,
263
(
1972
).
31.
C. E.
Aumann
,
G. L.
Skofronick
, and
J. A.
Martin
,
J. Vac. Sci. Technol. B
13
,
1178
(
1995
).
32.
G.
Kresse
,
M.
Schmid
,
E.
Napetschnig
,
M.
Shishkin
,
L.
Köhler
, and
P.
Varga
,
Science
308
,
1440
(
2005
).
33.
M. P.
Allen
and
L. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
New York
,
1987
).
34.
C.
Landron
,
L.
Hennet
,
T. E.
Jenkins
,
G. N.
Greaves
,
J. P.
Coutures
, and
A. K.
Soper
,
Phys. Rev. Lett.
86
,
4839
(
2001
).
35.
B. S.
Berry
and
W. C.
Pritchet
,
J. Non-Cryst. Solids
18
,
285
(
1975
).
36.
R.
Kniep
,
P.
Lamparter
, and
S.
Steeb
,
Angew. Chem.
101
,
975
(
1989
).
37.
P.
Lamparter
and
R.
Kniep
,
Physica B
234–236
,
405
(
1997
).
38.
M. A.
Trunov
,
S. M.
Umbrajkar
,
M.
Schoenitz
,
J. T.
Mang
, and
E. L.
Dreizin
,
J. Phys. Chem. B
110
,
13094
(
2006
).
39.
C.
Gauthier
,
J.-M.
Pelletier
,
Q.
Wang
, and
J. J.
Blandin
,
J. Non-Cryst. Solids
345–346
,
469
(
2004
).
40.
C. A.
Schuh
,
T. C.
Hufnagel
, and
U.
Ramamurty
,
Acta Mater.
55
,
4067
(
2007
).
41.
W. F.
Gale
and
T. C.
Totemeier
,
Smithells Metals Reference Book
, 8th ed. (
Elsevier Butterworth-Heinemann
,
Burlington, USA
,
2004
).
42.
G. N.
Kamm
and
G. A.
Alers
,
J. Appl. Phys.
35
,
327
(
1964
).
43.
W.
Martienssen
and
H.
Warlimont
,
Springer Handbook of Condensed Matter and Materials Data
(
Springer
,
2005
).
44.
G. T.
Mearini
and
R. W.
Hoffman
,
J. Electron. Mater.
22
,
623
(
1993
).
45.
R. W.
Hoffman
,
Mater. Res. Soc. Symp. Proc.
130
,
295
(
1989
).
46.
K. Y.
Ng
,
Y.
Lin
, and
A. H. W.
Ngan
,
J. Mech. Phys. Solids
59
,
251
(
2011
).
47.
T. J.
Campbell
,
G.
Aral
,
S.
Ogata
,
R. K.
Kalia
,
A.
Nakano
, and
P.
Vashishta
,
Phys. Rev. B
71
,
205413
(
2005
).
48.
H.
Huang
and
F.
Spaepen
,
Acta Mater.
48
,
3261
(
2000
).
49.
M. A.
Haque
and
M. T. A.
Saif
,
Scr. Mater.
47
,
863
(
2002
).
50.
M. A.
Haque
and
M. T. A.
Saif
,
Sens. Actuators, A
97–98
,
239
(
2002
).
51.
Y.-C.
Cheng
,
C.-J.
Tong
, and
M.-T.
Lin
,
Microsyst. Technol.
17
,
721
(
2011
).
52.
A.
Reddy
,
H.
Kahn
, and
A. H.
Heuer
,
J. Microelectromech. Syst.
16
,
650
(
2007
).
53.
J.
Gaspar
,
M. E.
Schmidt
,
J.
Held
, and
O.
Paul
,
J. Microelectromech. Syst.
18
,
1062
(
2009
).
54.
C. T.
Rosenmayer
,
F. R.
Brotzen
, and
J.
Gale
,
Mater. Res. Soc. Symp. Proc.
130
,
77
(
1989
).
55.
D.
Heinen
,
H. G.
Bohn
, and
W.
Schilling
,
J. Appl. Phys.
77
,
3742
(
1995
).
56.
D. T.
Read
,
Y.-W.
Cheng
,
R. R.
Keller
, and
J. D.
McColskey
,
Scr. Mater.
45
,
583
(
2001
).
57.
M. T. A.
Saif
,
S.
Zhang
,
A.
Haque
, and
K. J.
Hsia
,
Acta Mater.
50
,
2779
(
2002
).

Supplementary Material

You do not currently have access to this content.