We study the axial strain relaxation in GaAs/InAs core-shell nanowire heterostructures grown by molecular beam epitaxy. Besides a gradual strain relaxation of the shell material, we find a significant strain in the GaAs core, increasing with shell thickness. This strain is explained by a saturation of the dislocation density at the core-shell interface. Independent measurements of core and shell lattice parameters by x-ray diffraction reveal a relaxation of 93% in a 35 nm thick InAs shell surrounding cores of 80 nm diameter. The compressive strain of −0.5% compared to bulk InAs is accompanied by a tensile strain up to 0.9% in the GaAs core.

1.
O.
Demichel
,
M.
Heiss
,
J.
Bleuse
,
H.
Mariette
, and
A.
Fontcuberta i Morral
,
Appl. Phys. Lett.
97
,
201907
(
2010
).
2.
X.
Jiang
,
Q.
Xiong
,
S.
Nam
,
F.
Qian
,
Y.
Li
, and
C. M.
Lieber
,
Nano Lett.
7
,
3214
(
2007
).
3.
C.
Blömers
,
T.
Rieger
,
P.
Zellekens
,
F.
Haas
,
M. I.
Lepsa
,
H.
Hardtdegen
,
Ö.
Gül
,
N.
Demarina
,
D.
Grützmacher
,
H.
Lüth
, and
T.
Schäpers
,
Nanotechnology
24
,
035203
(
2013
).
4.
Nanotechnology: Information Technology I
, edited by
R.
Waser
(
Wiley-VCH
,
Weinheim
,
2008
), Vol.
3
.
5.
S.
Raychaudhuri
and
E. T.
Yu
,
J. Appl. Phys.
99
,
114308
(
2006
).
6.
O.
Madelung
,
Semiconductors: Data Handbook
(
Springer
,
Berlin, Heidelberg
,
2004
).
7.
K. L.
Kavanagh
,
J.
Salfi
,
I.
Savelyev
,
M.
Blumin
, and
H. E.
Ruda
,
Appl. Phys. Lett.
98
,
152103
(
2011
).
8.
R.
Popovitz-Biro
,
A.
Kretinin
,
P.
Von Huth
, and
H.
Shtrikman
,
Cryst. Growth Design
11
,
3858
(
2011
).
9.
K. L.
Kavanagh
,
I.
Saveliev
,
M.
Blumin
,
G.
Swadener
, and
H. E.
Ruda
,
J. Appl. Phys.
111
,
044301
(
2012
).
10.
I. A.
Goldthorpe
,
A. F.
Marshall
, and
P. C.
McIntyre
,
Nano Lett.
8
,
4081
(
2008
).
11.
M.
Keplinger
,
T.
Mårtensson
,
J.
Stangl
,
E.
Wintersberger
,
B.
Mandl
,
D.
Kriegner
,
V.
Holý
,
G.
Bauer
,
K.
Deppert
, and
L.
Samuelson
,
Nano Lett.
9
,
1877
(
2009
).
12.
T.
Rieger
,
S.
Heiderich
,
S.
Lenk
,
M. I.
Lepsa
, and
D.
Grützmacher
,
J. Cryst. Growth
353
,
39
(
2012
).
13.
T.
Rieger
,
M.
Luysberg
,
T.
Schäpers
,
D.
Grützmacher
, and
M. I.
Lepsa
,
Nano Lett.
12
,
5559
(
2012
).
14.
O. H.
Seeck
,
C.
Deiter
,
K.
Pflaum
,
F.
Bertam
,
A.
Beerlink
,
H.
Franz
,
J.
Horbach
,
H.
Schulte-Schrepping
,
B. M.
Murphy
,
M.
Greve
 et al,
J. Synchrotron Radiat.
19
,
30
(
2012
).
15.
A.
Biermanns
,
S.
Breuer
,
A.
Davydok
,
L.
Geelhaar
, and
U.
Pietsch
,
J. Appl. Crystallogr.
45
,
239
(
2012
).
16.
U.
Pietsch
,
V.
Holý
, and
T.
Baumbach
,
High-Resolution X-Ray Scattering: From Thin Films to Lateral Nanostructures
(
Springer
,
New York
,
2004
).
17.
C.
Panse
,
D.
Kriegner
, and
F.
Bechstedt
,
Phys. Rev. B
84
,
075217
(
2011
).
18.
A.
Biermanns
,
S.
Breuer
,
A.
Davydok
,
L.
Geelhaar
, and
U.
Pietsch
,
Phys. Status Solidi (RRL)
5
,
156
(
2011
).
19.
See supplementary material at http://dx.doi.org/10.1063/1.4790185 for a description of the nanodiffraction experiment, showing the spatial distribution of the different diffraction signals.
20.
H.
Yamaguchi
,
J. G.
Belk
,
X. M.
Zhang
,
J. L.
Sudijono
,
M. R.
Fahy
,
T. S.
Jones
,
D. W.
Pashley
, and
B. A.
Joyce
,
Phys. Rev. B
55
,
1337
(
1997
).
21.
J.
Grönqvist
,
N.
Sondergaard
,
F.
Boxberg
,
T.
Guhr
,
S.
Åberg
, and
H. Q.
Xu
,
J. Appl. Phys.
106
,
053508
(
2009
).
22.
R. M.
Martin
,
Phys. Rev. B
6
,
4546
(
1972
).
23.
C. Q.
Chen
,
Y.
Shi
,
Y. S.
Zhang
,
J.
Zhu
, and
Y. J.
Yan
,
Phys. Rev. Lett.
96
,
075505
(
2006
).
24.
Y. B.
Wang
,
L. F.
Wang
,
H. J.
Joyce
,
Q.
Gao
,
X. Z.
Liao
,
Y. W.
Mai
,
H. H.
Tan
,
J.
Zou
,
S. P.
Ringer
,
H. J.
Gao
 et al,
Adv. Mater.
23
,
1356
(
2011
).
25.
P.
Alekseev
,
M.
Dunaevskii
,
A.
Stovpyaga
,
M.
Lepsa
, and
A.
Titkov
,
Semiconductors
46
,
641
(
2012
).

Supplementary Material

You do not currently have access to this content.