The contribution of non-180° domain wall displacement to the frequency dependence of the longitudinal piezoelectric coefficient has been determined experimentally in lead zirconate titanate using time-resolved, in situ neutron diffraction. Under subcoercive electric fields of low frequencies, approximately 3% to 4% of the volume fraction of non-180° domains parallel to the field experienced polarization reorientation. This subtle non-180° domain wall motion directly contributes to 64% to 75% of the magnitude of the piezoelectric coefficient. Moreover, part of the 33 pm/V decrease in piezoelectric coefficient across 2 orders of magnitude in frequency is quantitatively attributed to non-180° domain wall motion effects.

1.
N.
Ikeda
,
H.
Ohsumi
,
K.
Ohwada
,
K.
Ishii
,
T.
Inami
,
K.
Kakurai
,
Y.
Murakami
,
K.
Yoshii
,
S.
Mori
,
Y.
Horibe
, and
H.
Kito
,
Nature
436
,
1136
(
2005
).
2.
X. L.
Zhang
,
Z. X.
Chen
,
L. E.
Cross
, and
W. A.
Schulze
,
J. Mater. Sci.
18
,
968
(
1983
).
3.
Q.
Zhang
,
W.
Pan
,
S.
Jang
, and
L.
Cross
,
J. Appl. Phys.
64
,
6445
(
1988
).
4.
C.
Elissalde
and
J.
Ravez
,
J. Mater. Chem.
11
,
1957
(
2001
).
5.
W.
Kleemann
,
J.
Dec
,
S.
Miga
,
T.
Woike
, and
R.
Pankrath
,
Phys. Rev. B
65
,
220101
(
2002
).
6.
O.
Bidault
,
P.
Goux
,
M.
Kchikech
,
M.
Belkaoumi
, and
M.
Maglione
,
Phys. Rev. B
49
,
7868
(
1994
).
7.
P.
Bintachitt
,
S.
Jesse
,
D.
Damjanovic
,
Y.
Han
,
I. M.
Reaney
,
S.
Trolier-McKinstry
, and
S. V.
Kalinin
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
7219
(
2010
).
8.
D.
Damjanovic
,
M.
Demartin
,
H. S.
Shulman
,
M.
Testorf
, and
N.
Setter
,
Sens. Actuators, A
53
,
353
(
1996
).
9.
D.
Damjanovic
,
Phys. Rev. B
55
,
R649
(
1997
).
10.
T.
Nattermann
,
Y.
Shapir
, and
I.
Vilfan
,
Phys. Rev. B
42
,
8577
(
1990
).
11.
A. A.
Fedorenko
and
S.
Stepanow
,
Phase Trans.
78
,
817
(
2005
).
12.
A. A. M.
Fedorenko
and
V.
Stepanow
,
Phys. Rev. B
70
,
224104
(
2004
).
13.
D.
Damjanovic
,
S.
Bharadwaja
, and
N.
Setter
,
Mater. Sci. Eng. B
120
,
170
(
2005
).
14.
J. L.
Jones
,
E.
Aksel
,
G.
Tutuncu
,
T.-M.
Usher
,
J.
Chen
,
X.
Xing
, and
A. J.
Studer
,
Phys. Rev. B
86
,
024104
(
2012
).
15.
A. J.
Studer
,
M. E.
Hagen
, and
T. J.
Noakes
,
Physica B
385–386
(
2
),
1013
(
2006
).
16.
J.
Daniels
,
J.
Jones
, and
T.
Finlayson
,
J. Phys. D: Appl. Phys.
39
,
5294
(
2006
).
17.
J.
Jones
,
E.
Slamovich
, and
K.
Bowman
,
J. Appl. Phys.
97
,
034113
(
2005
).
18.
J. E.
Daniels
,
T. R.
Finlayson
,
A. J.
Studer
,
M.
Hoffman
, and
J. L.
Jones
,
J. Appl. Phys.
101
,
094104
(
2007
).
19.
A.
Pramanick
,
D.
Damjanovic
,
J. E.
Daniels
,
J. C.
Nino
, and
J. L.
Jones
,
J. Am. Ceram. Soc.
94
,
293
(
2011
).
20.
J. L.
Jones
,
M.
Hoffman
,
J. E.
Daniels
, and
A. J.
Studer
,
Appl. Phys. Lett.
89
,
092901
(
2006
).
21.
A.
Pramanick
,
A.
Prewitt
,
M.
Cottrell
,
W.
Lee
,
A.
Studer
,
K.
An
,
C.
Hubbard
, and
J.
Jones
,
Appl. Phys. A: Mater. Sci. Process.
99
,
557
(
2010
).
22.
See supplementary material at http://dx.doi.org/10.1063/1.4789903 for detailed calculations for the determination of the contribution of 90° domain wall motion to longitudinal strain.

Supplementary Material

You do not currently have access to this content.