We have designed ultra-thin graphene microwave transistors by using pre-patterned metal or graphene nanoribbon back-gates and hexagonal boron nitride as a dielectric substrate. Despite the inhomogeneities induced by the graphene transfer process, we show that it is possible to operate these types of devices across a broad range of microwave frequencies. For the graphene nanoribbon gates, we observe a deviation of the current gain from the usual 1/f trend that can be attributed to the large gate resistance of these systems as we demonstrate with our small-signal model. The scattering parameter analysis shows a very limited back-action from the channel onto the graphene nanoribbon gates. Our work thus proves that graphene microwave transistors could be driven by graphene nanoribbon gates.

1.
I.
Meric
,
N.
Baklitskaya
,
P.
Kim
, and
K. L.
Shepard
,
Tech. Dig. - Int. Electron Devices Meet.
2008
,
4796738
.
2.
Y.-M.
Lin
,
K. A.
Jenkins
,
A.
Valdes-Garcia
,
J. P.
Small
,
D. B.
Farmer
, and
P.
Avouris
,
Nano Lett.
9
,
422
(
2009
).
3.
Y.-M.
Lin
,
C.
Dimitrakopoulos
,
K. A.
Jenkins
,
D. B.
Farmer
,
H.-Y.
Chiu
,
A.
Grill
, and
P.
Avouris
,
Science
327
,
622
(
2010
).
4.
L.
Liao
,
Y.-C.
Lin
,
M.
Bao
,
R.
Cheng
,
J.
Bai
,
Y.
Liu
,
Y.
Qu
,
K. L.
Wang
,
Y.
Huang
, and
X.
Duan
,
Nature
467
,
305
(
2010
).
5.
Y.
Wu
,
K. A.
Jenkins
,
A.
Valdes-Garcia
,
D. B.
Farmer
,
Y.
Zhu
,
A. A.
Bol
,
C.
Dimitrakopoulos
,
W.
Zhu
,
X.
Fengnian
,
P.
Avouris
, and
Y.-M.
Lin
,
Nano Lett.
6
,
3062
(
2012
).
6.
R.
Cheng
,
J.
Bai
,
L.
Liao
,
H.
Zhou
,
Y.
Chen
,
L.
Liu
,
Y.-C.
Lin
,
S.
Jiang
,
Y.
Huang
, and
X.
Duan
,
Proc. Natl. Acad. Sci. U.S.A.
109
,
11588
(
2012
).
7.
Y.-M.
Lin
,
A.
Valdes-Garcia
,
S.-J.
Han
,
D. B.
Farmer
,
I.
Meric
,
Y.
Sun
,
Y.
Wu
,
C.
Dimitrakopoulos
,
A.
Grill
,
P.
Avouris
, and
K. A.
Jenkins
,
Science
332
,
1294
(
2011
).
8.
S.-J.
Han
,
K. A.
Jenkins
,
A.
Valdes Garcia
,
A. D.
Franklin
,
A. A.
Bol
, and
W.
Haensch
,
Nano Lett.
11
,
3690
(
2011
).
9.
M.
Ishigami
,
J. H.
Chen
,
W. G.
Cullen
,
M. S.
Fuhrer
, and
E. D.
Williams
,
Nano Lett.
7
,
1643
(
2007
).
10.
J. H.
Chen
,
C.
Jang
,
S.
Adam
,
M. S.
Fuhrer
,
E. D.
Williams
, and
M.
Ishigami
,
Nat. Phys.
4
,
377
(
2008
).
11.
E. H.
Hwang
,
S.
Adam
, and
S.
Das Sarma
,
Phys. Rev. Lett.
98
,
186806
(
2007
).
12.
F.
Schwierz
,
Nat. Nanotechnol.
5
,
487
(
2010
).
13.
C. R.
Dean
,
A. F.
Young
,
I.
Meric
,
C.
Lee
,
L.
Wang
,
S.
Sorgenfrei
,
K.
Watanabe
,
T.
Taniguchi
,
P.
Kim
,
K. L.
Shepard
, and
J.
Hone
,
Nat. Nanotechnol.
5
,
722
(
2010
).
14.
G.
Giovannetti
,
P. A.
Khomyakov
,
G.
Brocks
,
P. J.
Kelly
, and
J.
van den Brink
,
Phys. Rev. B
76
,
073103
(
2007
).
15.
E.
Pallecchi
,
C.
Benz
,
A. C.
Betz
,
H.
v. Löhneysen
,
B.
Plaçais
, and
R.
Danneau
,
Appl. Phys. Lett.
99
,
113502
(
2011
).
16.
H.
Wang
,
A.
Hsu
,
D. S.
Lee
,
K. K.
Kim
,
J.
Kong
, and
T.
Palacios
,
IEEE Electron Device Lett.
33
,
324
(
2012
).
17.
T.
Taniguchi
and
K.
Watanabe
,
J. Cryst. Growth
303
,
525
(
2007
).
18.
M. S.
Bresnehan
,
M. J.
Hollander
,
M.
Wetherington
,
M.
LaBella
,
K. A.
Trumbull
,
R.
Cavalero
,
D. W.
Snyder
, and
J. A.
Robinson
,
ACS Nano
6
,
5234
(
2012
).
19.
S.-J.
Han
,
Z.
Chen
,
A. A.
Bol
, and
Y.
Sun
,
IEEE Electron Device Lett.
32
,
812
(
2011
).
20.
J.
Bai
,
L.
Liao
,
H.
Zhou
,
R.
Cheng
,
L.
Liu
,
Y.
Huang
, and
X.
Duan
,
Nano Lett.
11
,
2555
(
2011
).
21.
D. M.
Pozar
,
Microwave Engineering
, 3rd ed. (
John Wiley & Sons
,
New Jersey
,
2005
).
22.
M. C. A. M.
Koolen
,
J. A. M.
Geelen
, and
M. P. J. G.
Versleijen
, in
Proceedings of Bipolar Circuits Technology Meeting
(
1991
), p.
188
.
23.
I.
Meric
,
C. R.
Dean
,
S.-J.
Han
,
L.
Wang
,
K. A.
Jenkins
,
J.
Hone
, and
K. L.
Shepard
,
Tech. Dig. - Int. Electron Devices Meet.
2011
,
2
1
.
24.
H.
Wang
,
T.
Taychatanapat
,
A.
Hsu
,
K.
Watanabe
,
T.
Taniguchi
,
P.
Jarillo-Herrero
, and
T.
Palacios
,
IEEE Electron Device Lett.
32
,
1209
(
2011
).
25.
J.
Kang
,
D.
Shin
,
S.
Bae
, and
B. H.
Hong
,
Nanoscale
4
,
5527
(
2012
).
26.
B.
Razavi
,
R.-H.
Yan
, and
K. F.
Lee
,
IEEE Trans. Circuits Syst., I
41
,
750
(
1994
).
27.
D. B.
Farmer
,
A.
Valdes-Garcia
,
C.
Dimitrakopoulos
, and
P.
Avouris
,
Appl. Phys. Lett.
101
,
143503
(
2012
).
28.
G.
Dambrine
,
A.
Cappy
,
F.
Héliodore
, and
E.
Playez
,
IEEE Trans. Microwave Theory Tech.
36
,
1151
(
1988
).
29.

In this small-signal model, we neglect all inductances (including kinetic inductance) and series resistances in drain and source since they mainly scale |h21| up or down, and do not affect dramatically the value of Rg.

30.

This is due to the wider channel and thinner h-BN thickness of the graphene gate devices as to compare to the metal gate devices (and therefore increases the gate coupling capacity).

31.
T.
Fang
,
A.
Konar
,
H.
Xing
, and
D.
Jena
,
Appl. Phys. Lett.
91
,
092109
(
2007
).
32.
E.
Pallecchi
,
A. C.
Betz
,
J.
Chaste
,
G.
Fève
,
B.
Huard
,
T.
Kontos
,
J.-M.
Berroir
, and
B.
Plaçais
,
Phys. Rev. B
83
,
125408
(
2011
).
33.
I.
Meric
,
M. Y.
Han
,
A. F.
Young
,
B.
Özyilmaz
,
P.
Kim
, and
K. L.
Shepard
,
Nat. Nanotechnol.
3
,
654
(
2008
).
You do not currently have access to this content.