Wetting of sessile bubbles on various wetting surfaces (solid and liquid) has been studied. A model is presented for the apparent contact angle of a sessile bubble based on a modified Young's equation––the experimental results agree with the model. Wetting a hydrophilic surface results in a bubble contact angle of 90° whereas using a superhydrophobic surface one observes 134°. For hydrophilic surfaces, the bubble angle diminishes with bubble radius whereas on a superhydrophobic surface, the bubble angle increases. The size of the plateau borders governs the bubble contact angle, depending on the wetting of the surface.

1.
P.
Stevenson
,
Foam Engineering: Fundamentals and Applications
(
Wiley-Blackwell
,
2012
).
2.
A.
Sylvester
,
T.
Döring
, and
A.
Schmidt
, in
Proceedings of 4th International Conference on Tangible, Embedded, and Embodied Interaction
,
2010
, p.
269
.
3.
Y.
Ochiai
,
A.
Oyama
, and
K.
Toyoshima
, in Proceedings of SIGGRAPH Emerging Technologies, Los Angeles, California, 5–9 August
2012
.
4.
G.
Yu
,
A.
Cao
, and
C. M.
Lieber
,
Nat. Nanotechnol.
2
,
372
(
2007
).
5.
T.
Georgiou
,
L.
Britnell
,
P.
Blake
,
R. V.
Gorbachev
,
A.
Gholinia
,
A. K.
Geim
,
C.
Casiraghi
, and
K. S.
Novoselov
,
Appl. Phys. Lett.
99
,
093103
(
2011
).
6.
R.
Hooke
,
On Holes (Black Film) in Soap Bubbles
(
Community Royal Society
,
1672
).
7.
I.
Newton
,
Opticks or a Treatise on the Reflections, Refractions and Inflections and the Colour of Light
(
London
,
1704
).
8.
T.
Young
,
Philos. Trans. R. Soc. London
92
,
387
(
1802
).
9.
J. A. F.
Plateau
,
Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires
(
Ghent
,
1873
).
10.
J.
Lyklema
and
K. J.
Mysels
,
J. Am. Chem. Soc.
87
,
2539
(
1965
).
11.
M.
Hutchings
,
F.
Morgan
,
M.
Ritoré
, and
A.
Ros
,
Ann. Math.
155
,
459
(
2002
).
12.
R. E.
Goldstein
,
H. K.
Moffatt
,
A. I.
Pesci
, and
R. L.
Ricca
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
21979
(
2010
).
13.
C. T. R.
Wilson
and
G. I.
Taylor
,
Proc. Cambridge Philos. Soc.
22
,
728
730
(
1925
).
14.
G.
Taylor
,
Proc. R. Soc. London, A
280
,
383
397
(
1964
).
15.
O.
Bonhomme
,
O.
Liot
,
A.-L.
Biance
, and
L.
Bocquet
,
Phys. Rev. Lett.
110
,
054502
(
2013
).
16.
D. E.
Moulton
and
J. A.
Pelesko
,
J. Colloid Interface Sci.
322
,
252
(
2008
).
17.
J. F.
Rodrigues
,
B.
Saramago
, and
M. A.
Fortes
,
J. Colloid Interface Sci.
239
,
577
(
2001
).
18.
P. I. C.
Teixeira
and
M. A.
Fortes
,
Phys. Rev. E
75
,
011404
(
2007
).
19.
M. A. C.
Teixeira
and
P. I. C.
Teixeira
,
J. Colloid Interface Sci.
338
,
193
(
2009
).
20.
J.
Bird
,
R.
de Ruiter
,
L.
Courbin
, and
H. A.
Stone
,
Nature (London)
465
,
759
(
2010
).
21.
U.
Kornek
,
F.
Müller
,
K.
Harth
,
A.
Hahn
,
S.
Ganesan
,
L.
Tobiska
, and
R.
Stannarius
,
New J. Phys.
12
,
073031
(
2010
).
22.
Y. D.
Afanasyev
,
G. T.
Andrews
, and
C. G.
Deacon
,
Am. J. Phys.
79
,
1079
(
2011
).
23.
T.
Young
,
Philos. Trans. R. Soc.
95
,
65
(
1805
).
24.
P. G.
de Gennes
,
F.
Brochard-Wyart
, and
D.
Quéré
,
Capillarity and Wetting Phenomena
(
Springer
,
2004
).
25.
R. J.
Good
and
M. N.
Koo
,
J. Colloid Interface Sci.
71
,
283
(
1979
).
26.
W. D.
Harkins
and
F. E.
Brown
,
J. Am. Chem. Soc.
41
,
499
(
1919
).
27.
B.-B.
Lee
,
P.
Ravindra
, and
E.-S.
Chan
,
Chem. Eng. Commun.
195
,
889
(
2008
).
28.
S.
Arscott
,
Sci. Rep.
1
,
184
(
2011
).
29.
M.
Stubenrauch
,
M.
Fischer
,
C.
Kremin
,
S.
Stoebenau
,
A.
Albrecht
, and
O.
Nagel
,
J. Micromech. Microeng.
16
,
S82
(
2006
).
30.
M. K.
Chaudhury
and
G. M.
Whitesides
,
Langmuir
7
,
1013
(
1991
).
You do not currently have access to this content.