This letter presents a level set-based topology optimization method that provides discrete cloaking configurations with superior performance. In some cases, the amount of light scattered around the two-dimensional cloaking structures is less than one-tenth that obtained in previous studies. Optimal configurations that express different geometrical characteristics can be obtained by adjusting a regularization parameter. The obtained configurations are free from grayscales, areas of intermediate density between that of dielectric materials or air, and the use of a level set method provides clear structural boundaries. The level set functions are given on grid points and the dielectric boundaries are interpreted as lines on the iso-surface of the level set functions. The finite element method is used for light scattering analyses, computations of the adjoint variable field, and when updating the level set functions.

1.
2.
E.
Yablonovitch
,
Phys. Rev. Lett.
58
,
2059
(
1987
).
3.
K.-C.
Kwan
,
X.
Zhang
,
Z.-Q.
Zhang
, and
C. T.
Chan
,
Appl. Phys. Lett.
82
,
4414
(
2003
).
4.
N. M.
Lawandy
,
R. M.
Balachandra
,
A. S. L.
Gomez
, and
E.
Sauvain
,
Nature
368
,
436
(
1994
).
5.
D. S.
Wiersma
,
M. P.
van Albada
, and
A.
Lagendijk
,
Nature
373
,
203
(
1995
).
6.
D. S.
Wiersma
,
Nature Phys.
4
,
359
367
(
2008
).
7.
G.
Fujii
,
T.
Matsumoto
,
T.
Takahashi
, and
T.
Ueta
,
Opt. Express
20
,
7300
7315
(
2012
).
8.
G.
Fujii
,
T.
Matsumoto
,
T.
Takahashi
, and
T.
Ueta
,
J. Phys. B
45
,
085404
(
2012
).
9.
G.
Fujii
,
T.
Matsumoto
,
T.
Takahashi
, and
T.
Ueta
,
Appl. Phys. A
107
,
35
42
(
2012
).
10.
B.-S.
Song
,
S.
Noda
,
T.
Asano
, and
Y.
Akahane
,
Nature Mater.
4
,
207
210
(
2005
).
11.
S.
Nakayama
,
S.
Ishida
,
S.
Iwamoto
, and
Y.
Arakawa
,
Appl. Phys. Lett.
98
,
171102
(
2011
).
12.
S.
Noda
,
M.
Fujita
, and
T.
Asano
,
Nature Photon.
1
,
449
458
(
2007
).
13.
U.
Leonhardt
,
Science
312
,
1777
1780
(
2006
).
14.
J. B.
Pendry
,
D.
Schurig
, and
D. R.
Smith
,
Science
312
,
1780
1782
(
2006
).
15.
L. H.
Gabrielli
,
J.
Cardenas
,
C. B.
Poitras
, and
M.
Lipson
,
Nature Photon.
3
,
461
463
(
2009
).
16.
D.
Schurig
,
J. B.
Pendry
, and
D. R.
Smith
,
Opt. Express
14
,
9794
9804
(
2006
).
17.
J.
Valentine
,
J.
Li
,
T.
Zentgraf
,
G.
Bartal
, and
X.
Zhang
,
Nature Mater.
8
(
2
),
568
571
(
2009
).
18.
B.
Zhang
,
Y.
Luo
,
X.
Liu
, and
G.
Barbastathis
,
Phys. Rev. Lett.
106
,
033901
(
2011
).
19.
X.
Chen
,
Y.
Luo
,
J.
Zhang
,
K.
Jiang
,
J. B.
Pendry
, and
S.
Zhanga
,
Nature Commun.
2
,
176
(
2011
).
20.
T.
Ergin
,
N.
Stenger
,
P.
Brenner
,
J. B.
Pendry
, and
M.
Wegener
,
Science
328
,
337
339
(
2010
).
21.
D. R.
Smith
,
W. J.
Padilla
,
D. C.
Vier
,
S. C.
Nemat-Nasser
, and
S.
Shultz
,
Phys. Rev. Lett.
84
,
4184
4187
(
2000
).
22.
D.
Schurig
,
J. J.
Mock
,
B. J.
Justine
,
S. A.
Cummer
,
J. B.
Pendry
,
A. F.
Starr
, and
D. R.
Smith
,
Science
314
,
977
980
(
2006
).
23.
J.
Valentine
,
S.
Zhang
,
T.
Zentgraf
,
E.
Ulin-Avila
,
D. A.
Genov
,
G.
Bartal
, and
X.
Zhang
,
Nature
455
,
376
380
(
2008
).
24.
G.
Allaire
,
F.
Jouve
, and
A. M.
Toader
,
J. Comput. Phys.
194
,
363
393
(
2004
).
25.
M. P.
Bendsøe
and
N.
Kikuchi
,
Comput. Methods Appl. Mech. Eng.
71
(
2
),
197
224
(
1988
).
26.
J.
Andkjær
and
O.
Sigmund
,
Appl. Phys. Lett.
98
,
021112
(
2011
).
27.
J.
Andkjær
,
N. A.
Mortensen
, and
O.
Sigmund
,
Appl. Phys. Lett.
100
,
101106
(
2012
).
28.
J. K.
Guest
,
J. H.
Prévost
, and
T.
Belytschko
,
Int. J. Numer. Methods Eng.
61
,
238
254
(
2004
).
29.
F.
Wang
,
B. S.
Lazarov
, and
O.
Sigmund
,
Struct. Multidiscip. Optim.
43
,
767
784
(
2011
).
30.
T.
Yamada
,
K.
Izui
,
S.
Nishiwaki
, and
A.
Takezawa
,
Comput. Methods Appl. Mech. Eng.
199
,
2876
2891
(
2010
).
31.
J. P.
Berenger
,
J. Comput. Phys.
114
,
185
(
1994
).
32.
A.
Bermúdez
,
L.
Hervella-Nieto
,
A.
Prieto
, and
R.
Rodríguez
,
J. Comput. Phys.
223
,
469
(
2007
).
You do not currently have access to this content.