This study investigated an effect of nanotubes on a heated surface onto Leidenfrost droplet through high speed visualization and momentum balance analysis. Delayed cutback phenomena and Leidenfrost Point (LFP) by dramatically high heating level were observed, and it is elucidated through wettable and spreadable features induced by nanotubes. As much delayed LFP, transient boiling regime with explosion-like dynamics of a water droplet on the nanotubes was observed. Furthermore, nanotubes required higher wall temperature to maintain non wetting cushion, due to the induced slip condition by porous features.
REFERENCES
1.
J. A.
Eastman
, S. U. S.
Choi
, S.
Li
, W.
Yu
, and L. J.
Thompson
, Appl. Phys. Lett.
78
, 718
(2001
).2.
S. M.
You
, J. H.
Kim
, and K. H.
Kim
, Appl. Phys. Lett.
83
, 3374
(2003
).3.
S. J.
Kim
, I. C.
Bang
, J.
Buongiorno
, and L. W.
Hu
, Appl. Phys. Lett.
89
, 153107
(2006
).4.
H. D.
Kim
and M. H.
Kim
, Appl. Phys. Lett.
91
, 014104
(2007
).5.
C.
Li
, Z.
Wang
, P.-I.
Wang
, Y.
Peles
, N.
Koratkar
, and G. P.
Peterson
, Small
4
, 1084
–1088
(2008
).6.
R.
Chen
, M.-C.
Lu
, V.
Srinivasan
, Z.
Wang
, H. H.
Cho
, and A.
Majumadar
, Nano Lett.
9
(2
), 548
(2009
).7.
H. J.
Jo
, S. H.
Kim
, H.
Kim
, J.
Kim
, and M. H.
Kim
, Nano. Res. Lett.
7
, 242
(2012
).8.
P. J.
Berenson
, J. Heat Transfer
83
, 351
(1961
).9.
10.
H.
Kim
, G.
DeWitt
, T.
McKrell
, J.
Buongiorno
, and L.-W.
Hu
, Int. J. Multiphase Flow
35
, 427
(2009
).11.
H.
Kim
, J.
Buongiorno
, L.-W.
Hu
, and T.
McKrell
, Int. J. Heat Mass Transfer
53
, 1542
(2010
).12.
H.
Kim
, B.
Truong
, J.
Buongiorno
, and L. W.
Hu
, Appl. Phys. Lett.
98
, 083121
(2011
).13.
H. S.
Ahn
, C.
Lee
, H.
Kim
, H. J.
Jo
, S. H.
Kang
, J.
Kim
, and M. H.
Kim
, Nucl. Eng. Des.
240
, 3350
(2010
).14.
R. N.
Wenzel
, Ind. Eng. Chem.
28
, 988
(1936
).15.
S. G.
Kandlikar
and M. E.
Steinke
, Int. J. Heat Mass Transfer
45
, 3771
(2002
).16.
H. S.
Ahn
, G.
Park
, J.
Kim
, and M. H.
Kim
, Langmuir
28
, 2614
(2012
).17.
H. S.
Ahn
, H. J.
Jo
, S. H.
Kang
, and M. H.
Kim
, Appl. Phys. Lett.
98
, 071908
(2011
).18.
V. S.
Nikolayev
, D.
Chatain
, Y.
Garrabos
, and D.
Beysens
, Phys. Rev. Lett.
97
, 184503
(2006
).19.
H.
Wang
, S. V.
Garimella
, and J. Y.
Murthy
, Int. J. Heat Mass Transfer
51
, 6317
(2008
).20.
K.
Sefiane
, D.
Benielli
, and A.
Steinchen
, Colloids Surf., A
142
, 361
(1998
).21.
V. K.
Dhir
and S. P.
Liaw
, J. Heat Transfer
111
, 739
–746
(1989
).22.
P. J.
Berenson
, Int. J. Heat Mass Transfer
5
, 985
–999
(1962
).23.
A. L.
Biance
, C.
Clanet
, and D.
Quere
, Phys. Fluids
15
, 1632
(2003
).24.
E.
Bonaccurso
, H. J.
Butt
, and V. S. J.
Craig
, Phys. Rev. Lett.
90
, 144501
(2003
).25.
C.
Kunert
and J.
Harting
, Phys. Rev. Lett.
99
, 176001
(2007
).26.
C. T.
Avedisian
and J.
Koplik
, Int. J. Heat Mass Transfer
30
(2
), 379
–393
(1987
).27.
E. P.
Prokop'ev
and S. P.
Timoshenkov
, Theor. Found. Chem. Eng.
35
(1
), 76
(2001
).28.
M.
Fatehi
and M.
Kaviany
, Int. J. Heat and Mass Transfer
33
, 983
(1990
).29.
30.
See supplementary material at http://dx.doi.org/10.1063/1.4809944 for visualization results of droplet behaviors on bare (350 °C, 450 °C) and nanotubes (350 °C, 570 °C) surfaces.
© 2013 AIP Publishing LLC.
2013
AIP Publishing LLC
You do not currently have access to this content.