We report the properties of perylene-nanotube complexes that form efficient energy transfer systems. Most perylene-derivatives yield similar ratios between transfer and direct luminescence (0.66 ± 0.04). The photoluminescence spectra of the free compounds and the transfer complex are similar indicating that perylene and nanotubes act as separate systems. A further increase in interaction yields 40% higher transfer rates and luminescence excitation spectra that indicate a change in stacking of the perylene on the nanotube wall. All measurements are consistent with a transfer mechanism based on a dipole-dipole interaction at a distance much smaller than the Förster radius.

1.
S.
Reich
,
C.
Thomsen
, and
J.
Maultzsch
,
Carbon Nanotubes
(
Wiley-VCH
,
2004
).
2.
A.
Jorio
,
M. S.
Dresselhaus
, and
G.
Dresselhaus
, Carbon Nanotubes—Advanced Topics in the Synthesis, Structure, Properties, and Applications (
Springer
,
2008
).
3.
M. J.
O'Connell
,
S. M.
Bachilo
,
C. B.
Huffman
,
V. C.
Moore
,
M. S.
Strano
,
E. H.
Haroz
,
K. L.
Rialon
,
P. J.
Boul
,
W. H.
Noon
,
C.
Kittrell
,
J.
Ma
,
R. H.
Hauge
,
R. B.
Weisman
, and
R. E.
Smalley
,
Science
297
,
593
(
2002
).
4.
S. M.
Bachilo
,
M. S.
Strano
,
C.
Kittrell
,
R. H.
Hauge
,
R. E.
Smalley
, and
R. B.
Weisman
,
Science
298
,
2361
(
2002
).
5.
E.
Kymakis
and
G. A. J.
Amaratunga
,
Appl. Phys. Lett.
80
,
112
(
2002
).
6.
P. W.
Barone
,
R. S.
Parker
, and
M. S.
Strano
,
Anal. Chem.
77
,
7556
(
2005
).
7.
S. D.
Stranks
,
J. K.
Sprafke
,
H. L.
Anderson
, and
R. J.
Nicholas
,
ACS Nano
5
,
2307
(
2011
).
8.
P.
Avouris
,
M.
Freitag
, and
V.
Perebeinos
,
Nat. Photonics
2
,
341
(
2008
).
9.
A.
Nish
,
J.-Y.
Hwang
,
J.
Doig
, and
R. J.
Nicholas
,
Nanotechnology
19
,
095603
(
2008
).
10.
C.
Roquelet
,
J.-S.
Lauret
,
V.
Alain-Rizzo
,
C.
Voisin
,
R.
Fleurier
,
M.
Delarue
,
D.
Garrot
,
A.
Loiseau
,
P.
Roussignol
,
J. A.
Delaire
, and
E.
Deleporte
,
ChemPhysChem
11
,
1667
(
2010
).
11.
F.
Ernst
,
T.
Heek
,
A.
Setaro
,
R.
Haag
, and
S.
Reich
,
Adv. Funct. Mater.
22
,
3921
(
2012
).
12.
G.
Magadur
,
J.-S.
Lauret
,
V.
Alain-Rizzo
,
C.
Voisin
,
P.
Roussignol
,
E.
Deleporte
, and
J. A.
Delaire
,
ChemPhysChem
9
,
1250
(
2008
).
13.
C.
Roquelet
,
D.
Garrot
,
J. S.
Lauret
,
C.
Voisin
,
V.
Alain-Rizzo
,
P.
Roussignol
,
J. A.
Delaire
, and
E.
Deleporte
,
Appl. Phys. Lett.
97
,
141918
(
2010
).
14.
C.
Backes
,
C. D.
Schmidt
,
K.
Rosenlehner
,
F.
Hauke
,
J. N.
Coleman
, and
A.
Hirsch
,
Adv. Mater.
22
,
788
(
2010
).
15.
F.
Ernst
,
T.
Heek
,
R.
Haag
,
S.
Reich
, and
A.
Setaro
,
Phys. Status Solidi B
249
,
2465
(
2012
).
16.
F.
Ernst
,
T.
Heek
,
A.
Setaro
,
R.
Haag
, and
S.
Reich
,
J. Phys. Chem. C
117
,
1157
(
2013
).
17.
P.
Wu
and
L.
Brand
,
Anal. Biochem.
218
,
1
(
1994
).
18.
D.
Garrot
,
B.
Langlois
,
C.
Roquelet
,
T.
Michel
,
P.
Roussignol
,
C.
Delalande
,
E.
Deleporte
,
J.-S.
Lauret
, and
C.
Voisin
,
J. Phys. Chem. C
115
,
23283
(
2011
).
19.
F.
Schöppler
,
C.
Mann
,
T. C.
Hain
,
F. M.
Neubauer
,
G.
Privitera
,
F.
Bonaccorso
,
D.
Chu
,
A. C.
Ferrari
, and
T.
Hertel
,
J. Phys. Chem. C
115
,
14682
(
2011
).
20.
Y.
Zhao
,
A.-M.
Ren
,
J.-K.
Feng
, and
C.-C.
Sun
,
J. Chem. Phys.
129
,
014301
(
2008
).
21.

Based on previous measurements of absorbance and residual PL emission of the perylene derivatives as a function of concentration, Figures 2 (absorbance) and 4 (residual PL) of Ref. 11, we have no reason to suspect self-quenching.

22.
C. Y.
Wong
,
C.
Curutchet
,
S.
Tretiak
, and
G. D.
Scholes
,
J. Chem. Phys.
130
,
081104
(
2009
).
23.
The same analysis was done for the (9,5), (10,3), and (11,1) tubes (which emit at ∼1280 nm), yielding identical results. See supplemental material at http://dx.doi.org/10.1063/1.4810912 for the corresponding PLE spectra.
24.

All spectra were recorded at low optical densities to avoid artifacts. While the compounds do not have a critical micellar concentration, they stack in solution even at low molarities, resulting in the differences in the PLE spectra. (Ref. 30).

25.
P.
Tan
,
A.
Rozhin
,
T.
Hasan
,
P.
Hu
,
V.
Scardaci
,
W.
Milne
, and
A.
Ferrari
,
Phys. Rev. Lett.
99
,
137402
(
2007
).
26.
J.
Seibt
,
P.
Marquetand
,
V.
Engel
,
Z.
Chen
,
V.
Dehm
, and
F.
Würthner
,
Chem. Phys.
328
,
354
(
2006
).
27.
F.
Würthner
,
Z.
Chen
,
V.
Dehm
, and
V.
Stepanenko
,
Chem. Commun.
4
,
1188
(
2006
).
28.
R. F.
Fink
,
J.
Seibt
,
V.
Engel
,
M.
Renz
,
M.
Kaupp
,
S.
Lochbrunner
,
H.-M.
Zhao
,
J.
Pfister
,
F.
Würthner
, and
B.
Engels
,
J. Am. Chem. Soc.
130
,
12858
(
2008
).
29.
F.
Würthner
,
T. E.
Kaiser
, and
C. R.
Saha-Möller
,
Angew. Chem., Int. Ed.
50
,
3376
(
2011
).
30.
T.
Heek
,
J.
Nikolaus
,
R.
Schwarzer
,
C.
Fasting
,
P.
Welker
,
K.
Licha
,
A.
Herrmann
, and
R.
Haag
,
Bioconjugate Chem.
24
,
153
(
2013
).

Supplementary Material

You do not currently have access to this content.