To optimize the performance of multifunctional carbon nanotube-ferroelectric devices, it is necessary to understand both the polarization and charge dynamics effects on their transconductance. Directly comparing ferroelectric Pb(Zr0.2Ti0.8)O3 and dielectric SrTiO3 field effect transistors, we show that the two effects strongly compete, with transient charge dynamics initially masking up to 40% of the ferroelectric field effect. For applications, it is therefore crucial to maximize the quality of the ferroelectric film and the interface with the carbon nanotube to take full advantage of the switchable polarization.

1.
Carbon Nanotube Electronics
, edited by
A.
Javey
and
J.
Kong
(
Springer
,
New York
,
2009
).
2.
T.
Sakurai
,
T.
Yoshimura
,
S.
Akita
,
N.
Fujimura
, and
Y.
Nakayama
,
Jpn. J. Appl. Phys., Part 2
45
,
L1036
(
2006
).
3.
W.
Fu
,
Z.
Xu
,
X.
Bai
,
C.
Gu
, and
E.
Wang
,
Nano Lett.
9
,
921
(
2009
).
4.
W. Y.
Fu
,
Z.
Xu
,
L.
Liu
,
X. D.
Bai
, and
E. G.
Wang
,
Nanotechnology
20
,
475305
(
2009
).
5.
P.
Paruch
,
A.-B.
Posadas
,
M.
Dawber
,
C. H.
Ahn
, and
P. L.
McEuen
,
Appl. Phys. Lett.
93
,
132901
(
2008
).
6.
J. W.
Cheah
,
Y.
Shi
,
H. G.
Ong
,
C. W.
Lee
,
L.-J.
Li
, and
J.
Wang
,
Appl. Phys. Lett.
93
,
082103
(
2008
).
7.
T.
Nishio
,
Y.
Miyato
,
K.
Kobayashi
,
K.
Ishida
,
K.
Matsushige
, and
H.
Yamada
,
Nanotechnology
19
,
035202
(
2008
).
8.
S. V.
Kalinin
,
S.
Jesse
,
A.
Tselev
,
A. P.
Baddorf
, and
N.
Balke
,
ACS Nano
5
,
5683
(
2011
).
9.
S.
Gariglio
,
N.
Stucki
,
J.-M.
Triscone
, and
G.
Triscone
,
Appl. Phys. Lett.
90
,
202905
(
2007
).
10.
P.
Zubko
,
N.
Jecklin
,
N.
Stucki
,
C.
Lichtensteiger
,
G.
Rispens
, and
J.-M.
Triscone
,
Ferroelectrics
433
,
127
(
2012
).
11.
R.
Wang
,
Y.
Zhu
, and
S. M.
Shapiro
,
Phys. Rev. Lett.
80
,
2370
(
1998
).
12.
G. L.
Yuan
,
L. W.
Martin
,
R.
Ramesh
, and
A.
Uedono
,
Appl. Phys. Lett.
95
,
012904
(
2009
).
13.
S.
Kawasaki
,
G.
Catalan
,
H. J.
Fan
,
M. M.
Saad
,
J. M.
Gregg
,
M. A.
Correa-Duarte
,
J.
Rybczynski
,
F. D.
Morrison
,
T.
Tatsuta
,
O.
Tsuji
, and
J. F.
Scott
,
Appl. Phys. Lett.
92
,
053109
(
2008
).
14.
See supplementary material at http://dx.doi.org/10.1063/1.4809596 for additional transconductance measurements. For the 53 devices measured, the behavior at 0.36 V/s Vgd sweep rate varies from the very narrow window shown to partial or even complete dominance by the transient effects. However, as sweep rates were decreased to minimize the influence of transient effects, the hysteretic window widened, highlighting the increasing dominance of the ferroelectric field effect.
15.
M. S.
Fuhrer
,
B. M.
Kim
,
T.
Dürkop
, and
T.
Brintlinger
,
Nano Lett.
2
,
755
(
2002
).
16.
W.
Kim
,
A.
Javey
,
O.
Vermesh
,
Q.
Wang
,
Y.
Li
, and
H.
Dai
,
Nano Lett.
3
,
193
(
2003
).
17.
O. N.
Tufte
and
P. W.
Chapman
,
Phys. Rev.
155
,
796
(
1967
).
18.
X.
Hong
,
J.
Hoffman
,
A.
Posadas
,
K.
Zou
,
C. H.
Ahn
, and
J.
Zhu
,
Appl. Phys. Lett.
97
,
033114
(
2010
).
19.
C. H.
Ahn
,
S.
Gariglio
,
P.
Paruch
,
T.
Tybell
,
L.
Antognazza
, and
J.-M.
Triscone
,
Science
284
,
1152
(
1999
).
20.
K. S.
Takahashi
,
M.
Gabay
,
D.
Jaccard
,
K.
Shibuya
,
T.
Ohnishi
,
M.
Lippmaa
, and
J.-M.
Triscone
,
Nature
441
,
195
(
2006
).
21.
N. A.
Pertsev
,
A. G.
Zembilgotov
, and
A. K.
Tagantsev
,
Phys. Rev. Lett.
80
,
1988
(
1998
).
22.

For PZT, the d33 piezoelectric constant is ∼50 pm/V and the polarization ∼75 μC/cm2 for a tetragonality of 1.0475 (out-of-plane lattice constant of 4.148 Å, in-plane lattice constant of 3.96 Å). For the asymmetric 7 V voltage sweeps between approximately −3 and 4 V, a piezoelectric deformation of 350 pm would therefore be expected. The resulting change in tetragonality of ∼0.2% should not significantly affect the effective polarization.

23.
C.
Blaser
and
P.
Paruch
,
Appl. Phys. Lett.
101
,
142906
(
2012
).
24.
J.
Guyonnet
,
S.
Bustingorry
,
C.
Blaser
,
E. E.
Ferrero
,
I.
Gaponenko
,
J.
Karthik
,
L. W.
Martin
, and
P.
Paruch
, “
Assessment of environmental and disorder effects on ferroelectric domain dynamics
Phys. Rev. Lett.
(submitted).
25.
B.
Jaffe
,
W. R.
Cook
, and
H.
Jaffe
,
Piezoelectric Ceramics
(
Academic Press
,
London and New York
,
1971
).
26.
B.
Gao
,
D. C.
Glattli
,
B.
Plaçais
, and
A.
Bachtold
,
Phys. Rev. B
74
,
085410
(
2006
).
27.
M. J.
Biercuk
,
S.
Ilani
,
C. M.
Marcus
, and
P. L.
McEuen
, in
Carbon Nanotubes
, edited by
A.
Jorio
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
(
Springer
,
Berlin/Heidelberg
,
2008
).
28.
B. L.
Al'tshuler
,
JETP Lett.
41
,
648
(
1985
), available at http://www.jetpletters.ac.ru/ps/1470/article_22425.shtml.
29.
P. A.
Lee
and
A. D.
Stone
,
Phys. Rev. Lett.
55
,
1622
(
1985
).
30.
S. N.
Song
,
X. K.
Wang
,
R. P. H.
Chang
, and
J. B.
Ketterson
,
Phys. Rev. Lett.
72
,
697
(
1994
).
31.
L.
Langer
,
V.
Bayot
,
E.
Grivei
,
J.-P.
Issi
,
J. P.
Heremans
,
C. H.
Olk
,
L.
Stockman
,
C.
Van Haesendonck
, and
Y.
Bruynseraede
,
Phys. Rev. Lett.
76
,
479
(
1996
).
32.
A. I.
Larkin
and
D. E.
Khmel'nitskiĭ
,
Sov. Phys. JETP
64
,
1075
(
1986
), available at http://www.jetp.ac.ru/cgi-bin/e/index/e/64/5/p1075?a=list.
33.
C.
Terrier
,
D.
Babić
,
C.
Strunk
,
T.
Nussbaumer
, and
C.
Schönenberger
,
Europhys. Lett.
59
,
437
(
2002
).
34.
C.
Schönenberger
,
A.
Bachtold
,
C.
Strunk
,
J.-P.
Salvetat
, and
L.
Forró
,
Appl. Phys. A
69
,
283
(
1999
).
35.
L.
Shi
,
J.
Zhou
,
P.
Kim
,
A.
Bachtold
,
A.
Majumdar
, and
P. L.
McEuen
,
J. Appl. Phys.
105
,
104306
(
2009
).
36.
T.
Ludwig
,
Y. M.
Blanter
, and
A. D.
Mirlin
,
Phys. Rev. B
70
,
235315
(
2004
).

Supplementary Material

You do not currently have access to this content.