Ferroelectric transition involves tiny shift of ions within unit cell, thus being intrinsically a very fast process without apparent time-dependence. Contrary to this conventional wisdom, here we report a time-dependent ferroelectric transition, which occurs in hours. The system studied was Pb(1−x)(Zr0.4Ti0.6)(1−x/4)O3 − xLa system with relaxor-forming dopant La3+. The time-dependent ferroelectric transition occurs at the ferroelectric/relaxor crossover composition range of 0.09 < x ≤ 0.16. In these compositions, in situ Raman spectroscopy and transmission electron microscopy reveal very slow growth of ferroelectric phase. Dielectric measurement shows isothermal kinetics of the transition. The slow ferroelectric transition can be understood as being caused by the slowing-down of the otherwise fast growth of polar nano-domains due to the random local field caused by La3+, so that long time is needed to achieve long-range order macroscopic ferroelectric phase.

1.
M. E.
Lines
and
A. M.
Glass
,
Principles and Applications of Ferroelectrics and Related Materials
(
Clarendon Press
,
Oxford
,
1977
).
2.
N.
Setter
,
D.
Damjanovic
,
L.
Eng
,
G.
Fox
,
S.
Gevorgian
,
S.
Hong
,
A.
Kingon
,
H.
Kohlstedt
,
N. Y.
Park
, and
G. B.
Stephenson
,
J. Appl. Phys.
100
,
051606
(
2006
).
4.
K.
Uchino
,
Ferroelectric Devices
(
Marcel Dekker
,
2000
).
5.
D. G.
Schlom
,
L. Q.
Chen
,
C. B.
Eom
,
K. M.
Rabe
,
S. K.
Streiffer
, and
J. M.
Triscone
,
Annu. Rev. Mater. Res.
37
,
589
(
2007
).
6.
S.
Fahy
and
R.
Merlin
,
Phys. Rev. Lett.
73
,
1122
(
1994
).
7.
A.
Grigoriev
,
D. H.
Do
,
D. M.
Kim
,
C. B.
Eom
,
B.
Adams
,
E. M.
Dufresne
, and
P. G.
Evans
,
Phys. Rev. Lett.
96
,
187601
(
2006
).
8.
X.
Dai
,
Z.
Xu
, and
D.
Viehland
,
J. Am. Ceram. Soc.
79
,
1957
(
1996
).
9.
B.
Dkhil
and
J. M.
Kiat
,
J. Appl. Phys.
90
,
4676
(
2001
).
10.
H.
Wu
,
D.
Xue
,
D.
Lv
,
J.
Gao
,
S.
Guo
,
Y.
Zhou
,
X.
Ding
,
C.
Zhou
,
S.
Yang
, and
Y.
Yang
,
J. Appl. Phys.
112
,
052004
(
2012
).
11.
L. E.
Cross
,
Ferroelectrics
76
,
241
(
1987
).
12.
T. Y.
Kim
and
H. M.
Jang
,
Appl. Phys. Lett.
77
,
3824
(
2000
).
13.
X.
Dai
,
Z.
Xu
, and
D.
Viehland
,
J. Appl. Phys.
79
,
1021
(
1996
).
14.
X.
Dai
,
Z.
Xu
, and
D.
Viehland
,
Philos. Mag. B
70
,
33
(
1994
).
15.
X.
Dai
,
A.
DiGiovanni
, and
D.
Viehland
,
J. Appl. Phys.
74
,
3399
(
1993
).
16.
M.
El Marssi
,
R.
Farhi
, and
D.
Viehland
,
J. Appl. Phys.
81
,
355
(
1997
).
17.
E.
Buixaderas
,
I.
Gregora
,
S.
Kamba
,
J.
Petzelt
, and
M.
Kosec
,
J. Phys.: Condens. Matter
20
,
345229
(
2008
).
18.
M.
El Marssi
,
R.
Farhi
,
X.
Dai
,
A.
Morell
, and
D.
Viehland
,
J. Appl. Phys.
80
,
1079
(
1996
).
19.
V. V.
Efimov
,
E. A.
Efimova
,
S. S.
Khasanov
,
Y. S.
Kovalev
,
B. N.
Mavrin
,
A. O.
Pogosov
,
A.
Sternberg
, and
S. I.
Tiutiunikov
,
Phys. Status Solidu C
2
,
449
(
2005
).
20.
V. V.
Efimov
,
E. A.
Efimova
,
K.
Iakoubovskii
,
S.
Khasanov
,
D. I.
Kochubey
,
V. V.
Kriventsov
,
A.
Kuzmin
,
B. N.
Mavrin
,
M.
Sakharov
,
V.
Sikolenko
,
A. N.
Shmakov
, and
S. I.
Tiutiunnikov
,
J. Phys. Chem. Solids
67
,
2007
(
2006
).
21.
R. E.
Reed-Hill
and
R.
Abbaschian
,
Physical Metallurgy Principles.
(
Van Nostrand-Reinhold Press
,
New York
,
1973
), p.
583
.
22.
P.
Archambault
and
D.
Godard
,
Scr. Mater.
42
,
675
(
2000
).
23.
A. A.
Bokov
and
Z.-G.
Ye
,
J. Mater. Sci.
41
,
31
(
2006
).
24.
D.
Xue
,
J.
Gao
,
L.
Zhang
,
H.
Bao
,
W.
Liu
,
C.
Zhou
, and
X.
Ren
,
Appl. Phys. Lett.
94
,
082902
(
2009
).
25.
C.
Ma
,
H.
Guo
,
S. P.
Beckman
, and
X.
Tan
,
Phys. Rev. Lett.
109
,
107602
(
2012
).
26.
D.
Wang
,
X.
Ke
,
Y.
Wang
,
J.
Gao
,
L.
Zhang
,
S.
Yang
, and
X.
Ren
,
Phys. Rev. B
86
,
054120
(
2012
).
27.
R.-A.
Eichel
,
P.
Erhart
,
P.
Träskelin
,
K.
Albe
,
H.
Kungl
, and
M. J.
Hoffmann
,
Phys. Rev. Lett.
100
,
095504
(
2008
).
28.
S.
Semenovskaya
and
A. G.
Khachaturyan
,
J. Appl. Phys.
83
,
5125
(
1998
).
29.
A. P.
Levanyuk
and
A.
Sigov
,
Defects and Strctural Phase Transitions
(
Gordon and Breach Science
,
New York
,
1988
).
30.
W.
Dmowski
,
S. B.
Vakhrushev
,
I.-K.
Jeong
,
M. P.
Hehlen
,
F.
Trouw
, and
T.
Egami
,
Phys. Rev. Lett.
100
,
137602
(
2008
).
31.
V.
Westphal
,
W.
Kleemann
, and
M. D.
Glinchuk
,
Phys. Rev. Lett.
68
,
847
(
1992
).
32.
L.
Xie
,
Y. L.
Li
,
R.
Yu
,
Z. Y.
Cheng
,
X. Y.
Wei
,
X.
Yao
,
C. L.
Jia
,
K.
Urban
,
A. A.
Bokov
,
Z.-G.
Ye
, and
J.
Zhu
,
Phys. Rev. B
85
,
014118
(
2012
).
33.
P. M.
Gehring
,
S.
Wakimoto
,
Z.-G.
Ye
, and
G.
Shirane
,
Phys. Rev. Lett.
87
,
277601
(
2001
).
34.
V. V.
Shvartsman
,
A. L.
Kholkin
,
A.
Orlova
,
D.
Kiselev
,
A. A.
Bogomolov
, and
A.
Sternberg
,
Appl. Phys. Lett.
86
,
202907
(
2005
).
35.
J.
Zhang
,
Y.
Wang
,
X.
Ding
,
Z.
Zhang
,
Y.
Zhou
,
X.
Ren
,
D.
Wang
,
Y.
Ji
,
M.
Song
,
K.
Otsuka
, and
J.
Sun
,
Phys. Rev. B
84
,
214201
(
2011
).
36.
R.
Vasseur
,
D.
Xue
,
Y.
Zhou
,
W.
Ettoumi
,
X.
Ding
,
X.
Ren
, and
T.
Lookman
,
Phys. Rev. B
86
,
184103
(
2012
).
37.
T. B.
Massalski
,
Mater. Trans.
51
,
583
(
2010
).
38.
N.
Shankaraiah
,
K. P. N.
Murthy
,
T.
Lookman
, and
S. R.
Shenoy
,
Phys. Rev. B
84
,
064119
(
2011
).
39.
G. H.
Haertling
,
Ferroelectrics
75
,
25
(
1987
).
40.
J. W.
Zhang
,
Y. K.
Zou
,
Q.
Chen
,
R.
Zhang
,
K. K.
Li
,
H.
Jiang
,
P. L.
Huang
, and
X.
Chen
,
Appl. Phys. Lett.
89
,
061113
(
2006
).
You do not currently have access to this content.