In recent decades, cold atom experiments have become increasingly complex. While computers control most parameters, optimization is mostly done manually. This is a time-consuming task for a high-dimensional parameter space with unknown correlations. Here we automate this process using a genetic algorithm based on differential evolution. We demonstrate that this algorithm optimizes 21 correlated parameters and that it is robust against local maxima and experimental noise. The algorithm is flexible and easy to implement. Thus, the presented scheme can be applied to a wide range of experimental optimization tasks.

1.
R.
Hajima
,
N.
Takeda
,
H.
Ohashi
, and
M.
Akiyama
,
Nucl. Instrum. Methods
318
,
822
(
1992
).
2.
A.
Bacci
,
C.
Maroli
,
V.
Petrillo
,
A.
Rossi
, and
L.
Serafini
,
Nucl. Instrum. Methods
263
,
488
(
2007
).
3.
J. J.
Gilijamse
,
J.
Küpper
,
S.
Hoekstra
,
N.
Vanhaecke
,
S. Y. T.
van de Meerakker
, and
G.
Meijer
,
Phys. Rev. A
73
,
063410
(
2006
).
4.
R. A.
Woolley
,
J.
Stirling
,
A.
Radocea
,
N.
Krasnogor
, and
P.
Moriarty
,
Appl. Phys. Lett.
98
,
253104
(
2011
).
5.
S.
Obayashi
,
D.
Sasaki
,
Y.
Takeguchi
, and
N.
Hirose
,
IEEE Trans. Evol. Comput.
4
,
182
(
2000
).
6.
D.
Zeidler
,
S.
Frey
,
K.-L.
Kompa
, and
M.
Motzkus
,
Phys. Rev. A
64
,
023420
(
2001
).
7.
A.
Assion
,
T.
Baumert
,
M.
Bergt
,
T.
Brixner
,
B.
Kiefer
,
V.
Seyfried
,
M.
Strehle
, and
G.
Gerber
,
Science
282
,
919
(
1998
).
8.
W.
Rohringer
,
R.
Bucker
,
S.
Manz
,
T.
Betz
,
C.
Koller
,
M.
Gobel
,
A.
Perrin
,
J.
Schmiedmayer
, and
T.
Schumm
,
Appl. Phys. Lett.
93
,
264101
(
2008
).
9.
W.
Rohringer
,
D.
Fischer
,
M.
Trupke
,
J.
Schmiedmayer
, and
T.
Schumm
, “
Stochastic optimization of Bose-Einstein condensation using a genetic algorithm
,” in
Stochastic Optimization - Seeing the Optimal for the Uncertain
, edited by
D. I.
Dritsas
(
InTech
,
2011
).
10.
R.
Storn
and
K.
Price
, “
Differential evolution-a simple and efficient adaptive scheme for global optimisation over continuous spaces
,” Technical Report TR-95-012, International Computer Science Institute, Berkeley, California, USA,
1995
.
11.
K.
Price
,
R.
Storn
, and
J.
Lampinen
,
Differential Evolution: A Practical Approach to Global Optimization
(
Springer-Verlag, New York
,
2005
).
12.
K.
Cordes
,
P.
Mikulastik
,
A.
Vais
, and
J.
Ostermann
, in
Proceedings of Conference on Visual Media Production
(
2009
), pp. 135–143.
13.
Y.
Jin
and
J.
Branke
,
IEEE Trans. Evol. Comput.
9
,
303
317
(
2005
).
14.
S.
Das
,
A.
Konar
, and
U.
Chakraborty
, in
Proceedings of IEEE Congress on Evolutionary Computation
(
2005
), Vol.
2
, p.
1691
.
15.
K.
Zielinski
and
R.
Laur
,
Advances in Differential Evolution
(
Springer
,
2008
), pp.
111
138
.
16.
D. H.
Ackley
,
A Connectionist Machine for Genetic Hillclimbing
(
Kluwer Academic Publishers
,
Norwell, MA, USA
,
1987
).
17.
The function was parametrized according to f(xi)=10.3{10exp(12001dj=0d1xij2)+exp(1dj=0d1cos(π4xij))9.7} with d being the number of dimensions and xi ranging from −10 to 10.
18.
S.
Jöllenbeck
,
J.
Mahnke
,
R.
Randoll
,
W.
Ertmer
,
J.
Arlt
, and
C.
Klempt
,
Phys. Rev. A
83
,
043406
(
2011
).
19.
B. V.
Babu
and
M.
Jehan
, in
Proceedings of Congress on Evolutionary Computation
(
2003
), Vol.
4
, pp. 2696–2703.
You do not currently have access to this content.