In this work, we compare the photodetector performance of single nearly defect-free undoped and n-i-n GaN nanowires (NWs). Undoped NWs present a dark current three orders of magnitude lower than n-i-n structures, about ten times lower gain, and a strong dependence of the measurement environment. In vacuum, undoped NWs react with an increase of their responsivity, accompanied by stronger nonlinearities and persistent photoconductivity effects. This behavior is attributed to the unpinned Fermi level at the m-plane NW sidewalls, which enhances the role of surface states in the photodetection dynamics. In the air, adsorbed oxygen accelerates the carrier dynamics at the price of reducing the photoresponse. In contrast, in n-i-n NWs, the Fermi level pinning at the contact regions limits the photoinduced sweep of the surface band bending, hence reducing the environment sensitivity and preventing persistent effects even in vacuum.

1.
Y.
Li
,
F.
Qian
,
J.
Xiand
, and
C. M.
Lieber
,
Mater. Today
9
,
18
(
2006
).
2.
P.
Hiralal
,
H. E.
Unalan
, and
G. A. J.
Amaratunga
,
Nanotechnology
23
,
194002
(
2012
).
3.
Semiconductor Nanostructures for Optoelectronic Devices, Nanoscience and Technology
, edited by
G.-C.
Yi
(
Springer-Verlag
,
Berlin/Heidelberg
,
2012
), pp.
1
37
.
4.
G. S.
Aluri
,
A.
Motayed
,
A. V.
Davydov
,
V. P.
Oleshko
,
K. A.
Bertness
,
N. A.
Sanford
, and
R. V.
Mulpuri
,
Nanotechnology
23
,
175501
(
2012
).
5.
R.-S.
Chen
,
A.
Ganguly
,
L.-C.
Chen
, and
K.-H.
Chen
,
InGaN and ZnO-Based Materials and Devices
, Springer Series in Materials Science, edited by
S.
Pearton
(
Springer-Verlarg
,
Berlin/Heidelberg
,
2012
), pp.
295
315
.
6.
C.
Soci
,
A.
Zhang
,
X.-Y.
Bao
,
H.
Kim
,
Y.
Lo
, and
D.
Wang
,
J. Nanosci. Nanotechnol.
10
,
1430
(
2010
).
7.
R.
Calarco
,
T.
Stoica
,
O.
Brandt
, and
L.
Geelhaar
,
J. Mater. Res.
26
,
2157
(
2011
).
8.
K. A.
Bertness
,
N. A.
Sanford
, and
A.
Davydov
,
IEEE J. Quantum Electron.
17
,
847
(
2011
).
9.
R.-S.
Chen
,
H. Y.
Chen
,
C.-Y.
Lu
,
K.-H.
Chen
,
C.-P.
Chen
,
L.-C.
Chen
, and
Y.-J.
Yang
,
Appl. Phys. Lett.
91
,
223106
(
2007
).
10.
F.
González-Posada
,
R.
Songmuang
,
M.
Den Hertog
, and
E.
Monroy
,
Nano Lett.
12
,
172
(
2012
).
11.
S. A.
Jewett
,
S.
Makowski
,
B.
Andrews
,
M. J.
Manfra
, and
A.
Ivaniseivc
,
Acta Biomater.
8
,
728
(
2012
).
12.
C.
Pfüller
,
O.
Brandt
,
F.
Grosse
,
T.
Flissikowski
,
C.
Chèze
,
V.
Consonni
,
L.
Geelhaar
,
H.
Grahn
, and
T. H.
Riechert
,
Phys. Rev. B
82
,
0453320
(
2010
).
13.
P.
Lefebvre
,
S.
Albert
,
J.
Ristić
,
S.
Fernández-Garrido
,
J.
Grandal
,
M.-A.
Sánchez-García
, and
E.
Calleja
,
Superlattices Microstruct.
52
,
165
(
2012
).
14.
M.
Foussekis
,
A. A.
Baski
, and
M. A.
Reshchikov
,
Appl. Phys. Lett.
94
,
162116
(
2009
).
15.
M. A.
Reschikov
,
A.
Behrends
,
A.
Bakin
, and
A.
Waag
,
J. Vac. Sci. Technol. B
27
,
1688
(
2009
).
16.
R.
Calarco
,
M.
Marso
,
T.
Ritcher
,
A. I.
Aykanat
,
R.
Mejiers
,
A.
Hart
,
T.
Stoica
, and
H.
Luth
,
Nano Lett.
5
,
981
(
2005
).
17.
R. S.
Chen
,
C. Y.
Lu
,
K. H.
Chen
, and
C. L.
Chen
,
Appl. Phys. Lett.
95
,
233119
(
2009
).
18.
R.
Songmuang
,
O.
Landré
, and
B.
Daudin
,
Appl. Phys. Lett.
91
,
251902
(
2007
).
19.
M. I.
den Hertog
,
F.
González-Posada
,
R.
Songmuang
,
J.-L.
Rouviere
,
T.
Fournier
,
B.
Fernandez
, and
E.
Monroy
,
Nano Lett.
12
,
5691
(
2012
).
20.
J. H.
Luscombe
and
C. L.
Frenzen
,
Solid-State Electron.
46
,
885
(
2002
).
21.
V.
Dobrokhotov
,
D. N.
McIlroy
,
M. G.
Norton
,
A.
Abuzir
,
W. J.
Yeh
,
I.
Stevenson
,
R.
Pouy
,
J.
Bochenek
,
M.
Cartwright
,
L.
Wang
,
J.
Dawson
,
M.
Beaux
, and
C.
Berven
,
J. Appl. Phys.
99
,
104302
(
2006
).
22.
N. A.
Sanford
,
P. T.
Blanchard
,
K. A.
Bertness
,
L.
Mansfield
,
J. B.
Schlager
,
A. W.
Sanders
,
A.
Roshko
,
B. B.
Burton
, and
S. M.
George
,
J. Appl. Phys.
107
,
034318
(
2010
).
23.
M.
Kočan
,
A.
Rizzi
,
H.
Lüth
,
S.
Keller
, and
U. K.
Mishra
,
Phys. Status Solidi
234
,
773
(
2002
).
24.
K. M.
Tracy
,
W. J.
Mecouch
,
R. F.
Davis
, and
R. J.
Nemanich
,
J. Appl. Phys.
94
,
3163
(
2003
).
25.
S.
Chevtchenko
,
X.
Ni
,
N. Q.
Fan
,
A. A.
Baski
, and
H.
Morkoç
,
Appl. Phys. Lett.
88
,
122104
(
2006
).
26.
D.
Hofstetter
,
J.
Di Francesco
,
D.
Martin
,
N.
Grandjean
,
Y.
Kotsar
, and
E.
Monroy
,
Appl. Phys. Lett.
98
,
241101
(
2011
).
27.
E.
Calleja
,
M. A.
Sánchez-García
,
F. J.
Sánchez
,
F.
Calle
,
F. B.
Naranjo
,
E.
Muñoz
,
U.
Jahn
, and
K.
Ploog
,
Phys. Rev. B
58
,
1550
(
1998
).
28.
Y.
Gu
and
J.
Lauhon
,
Appl. Phys. Lett.
89
,
143102
(
2006
).
29.
A. D.
Schrieker
,
F. M.
Davidson
 III
,
R. J.
Wiacek
, and
B. A.
Korgel
,
Nanotechnology
17
,
2681
(
2006
).
30.
R.
Songmuang
,
G.
Katsaros
,
E.
Monroy
,
P.
Spathis
,
C.
Bougerol
,
M.
Mongillo
, and
S.
de Franceschi
,
Nano Lett.
10
,
3545
(
2010
).
31.
M. A.
Lampert
,
Phys. Rev.
103
,
1648
(
1956
).
32.
The gain, g, is calculated from the measurement of photocurrent, Iph, using the equation: g = (Iph/Popt)·(hc/λq), where h is Planck's constant, c is the speed of light, λ is the excitation wavelength, and q is the charge of the electron. For simplicity, we assume the external quantum efficiency is unity.
33.
Average values after measuring eight devices.
34.
C.
Soci
,
A.
Zhang
,
B.
Xiang
,
S. A.
Dayeh
,
D. P. R.
Aplin
,
J.
Park
,
X. Y.
Bao
,
Y. H.
Lo
, and
D.
Wang
,
Nano Lett.
7
,
1003
(
2007
).
35.
A.
Armstrong
,
G. T.
Wang
, and
A. A.
Talin
,
J. Electron. Mater.
38
,
484
(
2009
).
36.
A.
Cavallini
,
L.
Polenta
,
M.
Rossi
,
T.
Richter
,
M.
Marso
,
R.
Meijers
,
R.
Calarco
, and
H.
Lüth
,
Nano Lett.
6
,
1548
(
2006
).
37.
E.
Monroy
,
F.
Omnès
, and
F.
Calle
,
Semicond. Sci. Technol.
18
,
R33
(
2003
).
38.
M.
Bertelli
,
P.
Löptien
,
M.
Wnderoth
,
A.
Rizzi
,
R. G.
Ulbrich
,
M. C.
Righi
,
A.
Ferretti
,
L.
Martin-Samos
,
C. M.
Bertoni
, and
A.
Catellani
,
Phys. Rev. B
80
,
115324
(
2009
).
39.
D. J.
Carter
and
C.
Stampfl
,
Phys. Rev. B
79
,
195302
(
2009
).
40.
T.
Richter
,
H.
Lüth
,
R.
Meijers
,
R.
Calarco
, and
M.
Marso
,
Nano Lett.
9
,
3056
(
2008
).
You do not currently have access to this content.