Gating thermal transport is a key requirement in smart heat exchangers used in a variety of applications such as electronics and energy generation. Here, we demonstrate a high on-off ratio thermal valve using magnetic nanofluids actuated by a non-uniform magnetic field. Using nanofluids comprised of magnetic nanoparticles in paraffin oil, we obtain on-off ratios as high as 16, which is more than 5-fold higher than that seen in comparable nanofluids with uniform magnetic fields. Analysis of these results using heat transfer modeling shows that the remarkable enhancement arises from magneto-thermally activated convection due to field gradients. Such convective thermal gating could be promising for applications.

1.
H. K.
Lyeo
and
D. G.
Cahill
,
Phys. Rev. B
73
,
144301
(
2006
).
2.
X.
Geng
,
P.
Patel
,
A.
Narain
, and
D. D.
Meng
,
J. Micromech. Microeng.
21
,
085018
(
2011
).
3.
C. T.
Wittwer
,
G. C.
Fillmore
, and
D. J.
Garling
,
Anal. Biochem.
186
,
328
(
1990
).
4.
G. C.
Birur
,
T. W.
Sur
,
A. D.
Paris
,
P.
Shakkottai
,
A. A.
Green
,
and S. I.
Haapanen
,
Proc. SPIE
4560
,
196
(
2001
).
5.
A. D.
Laws
,
Y. J.
Chang
,
V. M.
Bright
,
and Y. C.
Lee
,
J. Electron. Packag.
130
,
021011
(
2008
).
6.
F. H.
Milanez
and
M. B.
Mantelli
,
Int. J. Heat Mass Transfer
46
,
4573
(
2003
).
7.
J.
Cho
,
C.
Richards
,
D.
Bahr
,
J.
Jiao
, and
R.
Richards
,
J. Micromech. Microeng.
18
,
105012
(
2008
).
8.
T. D.
Swanson
and
G. C.
Birur
,
Appl. Therm. Eng.
23
,
1055
(
2003
).
9.
G.
Cha
,
Y. S.
Ju
,
L. A.
Ahuré
, and
N. M.
Wereley
,
J. Appl. Phys.
107
,
09B505
(
2010
).
10.
M. T.
Lopez-Lopez
,
J.
DeVicente
,
G.
Bossis
,
F.
Gonzalez-Caballero
, and
J. D. G.
Duran
,
J. Mater. Res.
20
,
874
(
2005
).
11.
J.
Philip
,
P. D.
Shima
, and
B.
Raj
,
Appl. Phys. Lett.
92
,
043108
(
2008
).
12.
B.
Wright
,
H.
Thomas
,
H.
Hong
,
L.
Groven
,
J.
Puszynski
,
E.
Duke
,
X.
Ye
, and
S.
Jin
,
Appl. Phys. Lett.
91
,
173116
(
2007
).
13.
C. A.
Nieto de Castro
,
S. F. Y.
Li
,
A.
Nagashima
,
R. D.
Trengove
, and
W. A.
Wakeham
,
J. Phys. Chem. Ref. Data
15
,
1073
(
1986
).
14.
F.
Benseeba
,
F.
Zavaliche
,
P.
L'Ecuyer
,
R. W.
Cochrane
, and
T.
Veres
,
J. Colloid Interface Sci.
277
,
104
(
2004
).
15.
R. E.
Rosensweig
,
Annu. Rev. Fluid Mech.
19
,
437
(
1987
).
16.
C.-W.
Nan
,
R.
Birringer
,
D. R.
Clarke
, and
H.
Gleiter
,
J. Appl. Phys.
81
,
6692
(
1997
).
17.
S.
Odenbach
,
J. Phys. Condens. Matter
15
,
S1497
(
2003
).
18.
H.
Engler
,
D.
Borin
, and
S.
Odenbach
,
J. Phys.: Conf. Ser.
149
,
012105
(
2009
).
19.
Z.
Hashin
and
S.
Shtrikman
,
J. Mech. Phys. Solids
11
,
127
(
1963
).
20.
B. A.
Finlayson
,
J. Fluid Mech.
40
,
753
767
(
1970
).
21.
D.
Braithwaite
,
E.
Beaugnon
, and
R.
Tournier
,
Nature
354
,
134
(
1991
).
22.
S. M.
Snyder
,
T.
Cader
, and
B. A.
Finlayson
,
J. Magn. Magn. Mater.
262
,
269
(
2003
).
23.
24.
J.
Smit
and
H. P. J.
Wijn
,
Ferrites
(
John Wiley & Sons
,
New York
,
1959
).
25.
B.
Jeyadevan
,
C. N.
Chinnaswamy
,
K.
Shinoda
,
K.
Tohji
, and
H.
Oka
,
J. Appl. Phys.
93
,
8450
(
2003
).
26.
S.
Sahebjavaher
,
K.
Walus
, and
B.
Stoeber
,
Rev. Sci. Instrum.
81
,
023706
(
2010
).
You do not currently have access to this content.