This paper elucidates dynamic effects of phase transitions and thermal expansion on pyroelectric energy conversion. The Olsen cycle was performed on [001]-oriented 0.72PbMg1/3Nb2/3O30.28PbTiO3 (PMN-28PT) single crystals at different frequencies with electric field cycled between 0.2 and 0.75 MV/m and temperature between 22 and 140C. The measured energy density more than doubled as frequency increased from 0.0173 to 0.0211 Hz. This was attributed to secondary pyroelectric effect caused by thermal expansion. At 0.0211 Hz, the samples transitioned from pseudocubic to highly polarized tetragonal phase during cooling. At lower frequency, it underwent additional phase transition from tetragonal to less polarized monoclinic phase.

1.
R. B.
Olsen
,
D. A.
Bruno
,
J. M.
Briscoe
, and
W. F.
Butler
,
Ferroelectrics
38
,
975
(
1981
).
2.
S. B.
Lang
,
Sourcebook of Pyroelectricity
(
Gordon and Breach
,
New York, NY
,
1974
).
3.
S. B.
Lang
and
D. K.
Das-Gupta
,
Handbook of Advanced Electronic and Photonic Materials and Devices
(
Academic
,
San Diego, CA
,
2001
), Vol.
4
.
4.
M. E.
Lines
and
A. M.
Glass
,
Principles and Applications of Ferroelectrics and Related Materials
(
Clarendon
,
Oxford, UK
,
1977
).
5.
Z.
Li
,
Z.
Xi
,
Z.
Xu
, and
X.
Yao
,
J. Mater. Sci. Lett.
21
,
1325
(
2002
).
6.
M. W.
Hooker
,
Properties of PZT-Based Piezoelectric Ceramics Between −150 and 250 °C
(
Citeseer
,
1998
).
7.
R.
Kandilian
,
A.
Navid
, and
L.
Pilon
,
Smart Mater. Struct.
20
,
055020
(
2011
).
8.
I. M.
McKinley
,
R.
Kandilian
, and
L.
Pilon
,
Smart Mater. Struct.
21
,
035015
(
2012
).
9.
F. Y.
Lee
,
S.
Goljahi
,
I. M.
McKinley
,
C. S.
Lynch
, and
L.
Pilon
,
Smart Mater. Struct.
21
,
025021
(
2012
).
10.
A.
Herklotz
,
J. D.
Plumhof
,
A.
Rastelli
,
O. G.
Schmidt
,
L.
Schultz
, and
K.
Dorr
,
J. Appl. Phys.
108
,
094101
(
2010
).
11.
A.-E.
Renault
,
H.
Dammak
,
G.
Calvarin
, and
P.
Gaucher
,
J. Appl. Phys.
97
,
044105
(
2005
).
12.
V. H.
Schmidt
,
R.
Chien
,
I.-C.
Shih
, and
C.-S.
Tu
,
AIP Conf. Proc.
677
,
160
167
(
2003
).
13.
J.
Han
and
W.
Cao
,
Phys. Rev. B
68
,
134102
(
2003
).
14.
N.
Srivastava
and
G. J.
Weng
,
J. Appl. Phys.
99
,
054103
(
2006
).
15.
16.
D.
Zhou
,
F.
Wang
,
L.
Luo
,
J.
Chen
,
W.
Ge
,
X.
Zhao
, and
H.
Luo
,
J. Phys. D: Appl. Phys.
41
,
185402
(
2008
).
17.
A.
Slodczyk
, “
Structural, dielectric and vibrational studies of lead magnesium niobate-lead titanate (1x)PbMg1/3Nb2/3O3xPbTiO3 solid solutions
,” Ph.D. dissertation (
University of Silesia
,
2006
).
18.
A.
Navid
and
L.
Pilon
,
Smart Mater. Struct.
20
,
025012
(
2011
).
19.
C. B.
Sawyer
and
C. H.
Tower
,
Phys. Rev.
35
,
269
(
1930
).
20.
F. P.
Incropera
,
D. P.
DeWitt
,
T.
Bergman
, and
A.
Lavine
,
Fundamentals of Heat and Mass Transfer
, 6th ed. (
John Wiley and Sons, Ltd.
,
New York, NY
,
2006
).
21.
E. M.
Sparrow
and
A. J.
Stretton
,
Int. J. Heat Mass Transfer
28
,
741
(
1985
).
22.
G.
Bhikshamaiah
,
S.
Annapurna
, and
A. K.
Singh
,
Cryst. Res. Technol.
41
,
911
(
2006
).
23.
R. B.
Olsen
and
D.
Evans
,
J. Appl. Phys.
54
,
5941
(
1983
).
24.
R. B.
Olsen
and
D. A.
Bruno
, in
Proceedings of the 21st Intersociety Energy Conversion Engineering Conference, American Chemical Society
(
San Diego, CA
,
1986
), pp.
89
93
.
25.
L. S.
Kamzina
and
H.
Luo
,
Phys. Solid State
51
,
2316
(
2009
).
26.
See supplementary material at http://dx.doi.org/10.1063/1.4776668 for thermal properties of PMN-28PT and thermal analysis of cooling process 1-4.

Supplementary Material

You do not currently have access to this content.