Single or few-layer hexagonal boron nitride sheets usually have very large band gaps, which greatly hinders their applications in electronic circuits. In this letter, we propose a way to significantly reduce the band gap of hexagonal boron-nitride bilayer (BNBL) by applying an interlayer bias voltage. In the presence of the intrinsic and Rashba spin-orbit couplings, we demonstrate whether gated BNBL is topologically nontrivial depends strongly on its stacking type. For AA-stacking BNBL with inversion symmetry, the strong topological insulator phase is obtained, and phase boundaries are analytically given. We also observe a re-entrant phase behavior from a normal insulator to a topological insulator then to a normal insulator, which is switched by the gate voltage. For AB-stacking BNBL, it is always topologically trivial but exhibits an unusual quantum Hall phase with four degenerate low-energy states localized at a single edge. These findings provide potential applications of BNBLs in electronics and spintronics.

1.
A. H.
Castro Neto
,
F.
Guinea
,
N. M. R.
Peres
,
K. S.
Novoselov
, and
A. K.
Geim
,
Rev. Mod. Phys.
81
,
109
(
2009
);
O. V.
Yazyev
,
Rep. Prog. Phys
73
,
056501
(
2010
).
2.
C. L.
Kane
and
E. J.
Mele
,
Phys. Rev. Lett.
95
,
146802
,
226801
(
2005
).
3.
H.
Min
,
J. E.
Hill
,
N. A.
Sinitsyn
,
B. R.
Sahu
,
L.
Kleinman
, and
A. H.
MacDonald
,
Phys. Rev. B
74
,
165310
(
2006
).
4.
B. A.
Bernevig
,
T. L.
Hughes
, and
S.-C.
Zhang
,
Science
314
,
1757
(
2006
);
[PubMed]
M.
König
,
S.
Wiedmann
,
C.
Brüne
,
A.
Roth
,
H.
Buhmann
,
L. W.
Molenkamp
,
X.-L.
Qi
, and
S.-C.
Zhang
,
Science
318
,
766
(
2007
).
[PubMed]
5.
J.
Li
and
K.
Chang
,
Appl. Phys. Lett.
95
,
222110
(
2009
).
6.
Y.
Yang
,
Z.
Xu
,
L.
Sheng
,
B.
Wang
,
D. Y.
Xing
, and
D. N.
Sheng
,
Phys. Rev. Lett.
107
,
066602
(
2011
).
7.
Z.
Qiao
,
W.-K.
Tse
,
H.
Jiang
,
Y.
Yao
, and
Q.
Niu
,
Phys. Rev. Lett.
107
,
256801
(
2011
).
8.
X.
Li
,
Z.
Qiao
,
J.
Jung
, and
Q.
Niu
,
Phys. Rev. B
85
,
201404
R
(
2012
).
9.
D. A.
Abanin
and
D. A.
Pesin
,
Phys. Rev. Lett.
109
,
066802
(
2012
).
10.
D.
Pacilé
,
J. C.
Meyer
,
Ç. Ö.
Girit
, and
A.
Zettl
,
Appl. Phys. Lett.
92
,
133107
(
2008
).
11.
L.
Song
,
L.
Ci
,
H.
Lu
,
P. B.
Sorokin
,
C.
Jin
,
J.
Ni
,
A. G.
Kvashnin
,
D. G.
Kvashnin
,
J.
Lou
,
B. I.
Yakobson
, and
P. M.
Ajayan
,
Nano Lett.
10
,
3209
(
2010
).
12.
A.
Nagashima
,
N.
Tejima
,
Y.
Gamou
,
T.
Kawai
, and
C.
Oshima
,
Phys. Rev. B
51
,
4606
(
1995
).
13.
M.
Topsakal
,
E.
Aktürk
, and
S.
Ciraci
,
Phys. Rev. B
79
,
115442
(
2009
).
14.
K.
Watanabe
,
T.
Taniguchi
, and
H.
Kanda
,
Nat. Mater.
3
,
404
(
2004
).
15.
R. M.
Ribeiro
and
N. M. R.
Peres
,
Phys. Rev. B
83
,
235312
(
2011
).
16.
N.
Marom
,
J.
Bernstein
,
J.
Garel
,
A.
Tkatchenko
,
E.
Joselevich
,
L.
Kronik
, and
O.
Hod
,
Phys. Rev. Lett.
105
,
046801
(
2010
).
17.
J. H.
Warner
,
M. H.
Rümmeli
,
A.
Bachmatiuk
, and
B.
Büchner
,
ACS Nano
4
,
1299
(
2010
).
18.
Y.
Zhang
,
T.-T.
Tang
,
C.
Girit
,
Z.
Hao
,
M. C.
Martin
,
A.
Zettl
,
M. F.
Crommie
,
Y. R.
Shen
, and
F.
Wang
,
Nature (London)
459
,
820
(
2009
).
19.
J.
Velasco
 Jr.
,
L.
Jing
,
W.
Bao
,
Y.
Lee
,
P.
Kratz
,
V.
Aji
,
M.
Bockrath
,
C. N.
Lau
,
C.
Varma
,
R.
Stillwell
,
D.
Smirnov
,
F.
Zhang
,
J.
Jung
, and
A. H.
MacDonald
,
Nat. Nanotechnol.
7
,
156
(
2012
).
20.
M. S.
Miao
,
Q.
Yan
,
C. G.
Van de Walle
,
W. K.
Lou
,
L. L.
Li
, and
K.
Chang
,
Phys. Rev. Lett.
109
,
186803
(
2012
).
21.
C.
Weeks
,
J.
Hu
,
J.
Alicea
,
M.
Franz
, and
R.
Wu
,
Phys. Rev. X
1
,
021001
(
2011
).
22.
R.
Yu
,
X. L.
Qi
,
A.
Bernevig
,
Z.
Fang
, and
X.
Dai
,
Phys. Rev. B
84
,
075119
(
2011
).
23.
E. V.
Castro
,
N. M. R.
Peres
,
J. M. B.
Lopes dos Santos
,
A. H.
Castro Neto
, and
F.
Guinea
,
Phys. Rev. Lett.
100
,
026802
(
2008
).
24.
S.
Datta
,
Electronic Transport in Mesoscopic Systems
(
Cambridge University Press
,
Cambridge
,
1998
).
You do not currently have access to this content.