Measuring intracellular temperature is critical to understanding many cellular functions but still remains challenging. Here, we present a technique–fluorescence-assisted photoacoustic thermometry (FAPT)–for intracellular temperature mapping applications. To demonstrate FAPT, we monitored the intracellular temperature distribution of HeLa cells with sub-degree (0.7 °C) temperature resolution and sub-micron (0.23 μm) spatial resolution at a sampling rate of 1 kHz. Compared to traditional fluorescence-based methods, FAPT features the unique capability of transforming a regular fluorescence probe into a concentration- and excitation-independent temperature sensor, bringing a large collection of commercially available generic fluorescent probes into the realm of intracellular temperature sensing.

1.
A.
Bahat
,
I.
Tur-Kaspa
,
A.
Gakamsky
,
L. C.
Giojalas
,
H.
Breitbart
, and
M.
Eisenbach
,
Nat. Med.
9
(
2
),
149
150
(
2003
).
2.
B. B.
Lowell
and
B. M.
Spiegelman
,
Nature
404
(
6778
),
652
660
(
2000
).
3.
Y.
Kamei
,
M.
Suzuki
,
K.
Watanabe
,
K.
Fujimori
,
T.
Kawasaki
,
T.
Deguchi
,
Y.
Yoneda
,
T.
Todo
,
S.
Takagi
,
T.
Funatsu
, and
S.
Yuba
,
Nat. Methods
6
(
1
),
79
81
(
2009
).
4.
M.
Suzuki
,
V.
Tseeb
,
K.
Oyama
, and
S.
Ishiwata
,
Biophys. J.
92
(
6
),
L46
L48
(
2007
).
5.
C. L.
Wang
,
R. Z.
Xu
,
W. J.
Tian
,
X. L.
Jiang
,
Z. Y.
Cui
,
M.
Wang
,
H. M.
Sun
,
K.
Fang
, and
N.
Gu
,
Cell Res.
21
(
10
),
1517
1519
(
2011
).
6.
F.
Vetrone
,
R.
Naccache
,
A.
Zamarron
,
A. J.
de la Fuente
,
F.
Sanz-Rodriguez
,
L. M.
Maestro
,
E. M.
Rodriguez
,
D.
Jaque
,
J. G.
Sole
, and
J. A.
Capobianco
,
ACS Nano
4
(
6
),
3254
3258
(
2010
).
7.
C.
Gota
,
K.
Okabe
,
T.
Funatsu
,
Y.
Harada
, and
S.
Uchiyama
,
J. Am. Chem. Soc.
131
(
8
),
2766
2767
(
2009
).
8.
L.
Gao
,
L.
Wang
,
C.
Li
,
Y.
Liu
,
H.
Ke
,
C.
Zhang
, and
L. V.
Wang
,
J. Biomed. Opt.
18
(
2
),
026003
(
2013
).
9.
K.
Okabe
,
N.
Inada
,
C.
Gota
,
Y.
Harada
,
T.
Funatsu
, and
S.
Uchiyama
,
Nat. Commun.
3
,
705
(
2012
).
10.
J. S.
Donner
,
S. A.
Thompson
,
M. P.
Kreuzer
,
G.
Baffou
, and
R.
Quidant
,
Nano Lett
12
(
4
),
2107
2111
(
2012
).
11.
I.
Johnson
and
M. T. Z.
Spence
,
Molecular Probes Handbook, A Guide to Fluorescent Probes and Labeling Technologies
(
Invitrogen
,
2011
).
12.
J. R.
Lakowicz
,
Principles of Fluorescence Spectroscopy
, 3rd ed. (
Springer
,
New York
,
2006
).
13.
Y.
Wang
and
L. V.
Wang
,
J. Biomed. Opt.
17
(
8
),
086007
(
2012
).
14.
L. V.
Wang
and
H.-i.
Wu
,
Biomedical Optics: Principles and Imaging
(
Wiley-Interscience
,
Hoboken, N.J.
,
2007
).
15.
I. V.
Larina
,
K. V.
Larin
, and
R. O.
Esenaliev
,
J. Phys. D: Appl. Phys.
38
(
15
),
2633
2639
(
2005
).
16.
P. V.
Chitnis
,
J.
Mamou
,
J.
McLaughlan
,
T.
Murray
, and
R. A.
Roy
, in
IEEE International Ultrasonics Symposium (IUS)
(
2009
), pp.
1757
1760
.
17.
J.
Shah
,
S.
Park
,
S.
Aglyamov
,
T.
Larson
,
L.
Ma
,
K.
Sokolov
,
K.
Johnston
,
T.
Milner
, and
S. Y.
Emelianov
,
J. Biomed. Opt.
13
(
3
),
034024
(
2008
).
18.
C.
Zhang
,
K.
Maslov
, and
L. H. V.
Wang
,
Opt. Lett.
35
(
19
),
3195
3197
(
2010
).
19.
M. A.
Ali
,
J.
Moghaddasi
, and
S. A.
Ahmed
,
Appl. Opt.
29
(
27
),
3945
3949
(
1990
).
20.
K. H.
Drexhage
,
Top. Appl. Phys.
1
,
155
200
(
1990
).
21.
H.
Ke
,
Z.
Guo
,
T. N.
Erpelding
,
L.
Jankovic
,
R. L.
Grubb Iii
, and
L. V.
Wang
,
Proc. SPIE
7899
,
789938
(
2011
).
22.
S.
Telenkov
and
A.
Mandelis
,
Rev. Sci. Instrum.
81
(
12
),
124901
124907
(
2010
).
23.
M. E.
Peterson
,
R. M.
Daniel
,
M. J.
Danson
, and
R.
Eisenthal
,
Biochem. J.
402
,
331
337
(
2007
).
24.
L.
Beney
and
P.
Gervais
,
Appl. Microbiol. Biotechnol.
57
(
1–2
),
34
42
(
2001
).
25.
P.
Cesare
,
A.
Moriondo
,
V.
Vellani
, and
P. A.
McNaughton
,
Proc. Natl. Acad. Sci. U.S.A.
96
(
14
),
7658
7663
(
1999
).
You do not currently have access to this content.