In nanosystems, the thermal resistance between materials typically dominates the overall resistance. While size effects on thermal conductivity are well documented, size effects on thermal boundary conductance have only been speculated. In response, we characterize the relationship between interfacial resistance and material dimension using molecular dynamics. We find that the interfacial resistance increases linearly with inverse system length but is insensitive to cross-sectional area. Also, from the temperature-dependence of interfacial resistance, we conclude that contributions of short-wavelength phonons dominate. Lastly, by coupling the molecular dynamics to a two-temperature model, we show that electron-mediated transport has little effect on thermal resistance.

1.
P. L.
Kapitza
,
J. Phys. (USSR)
4
,
181
(
1941
).
2.
E. T.
Swartz
and
R. O.
Pohl
,
Rev. Mod. Phys.
61
,
605
(
1989
).
3.
P. E.
Hopkins
,
L. M.
Phinney
,
J. R.
Serrano
, and
T. E.
Beechem
,
Phys. Rev. B
82
,
85307
(
2010
).
4.
D. G.
Cahill
,
W. K.
Ford
,
K. E.
Goodson
,
G. D.
Mahan
,
A.
Majumdar
,
H. J.
Maris
,
R.
Merlin
, and
S. R.
Phillpot
,
J. Appl. Phys.
93
,
793
(
2003
).
5.
H.-K.
Lyeo
and
D. G.
Cahill
,
Phys. Rev. B
73
,
144301
(
2006
).
6.
P. M.
Norris
and
P. E.
Hopkins
,
J. Heat Transfer
131
,
43207
(
2009
).
7.
G. D.
Mahan
and
L. M.
Woods
,
Phys. Rev. Lett.
80
,
4016
(
1998
).
8.
L. W.
da Silva
and
M.
Kaviany
,
Int. J. Heat Mass Transfer
47
,
2417
(
2004
).
9.
T.
Westover
,
R.
Jones
,
J. Y.
Huang
,
G.
Wang
,
E.
Lai
, and
A. A.
Talin
,
Nano Lett.
9
,
257
(
2009
).
10.
P. K.
Schelling
,
S. R.
Phillpot
, and
P.
Keblinski
,
Appl. Phys. Lett.
80
,
2484
(
2002
).
11.
Y. K.
Koh
,
Y.
Cao
,
D. G.
Cahill
, and
D.
Jena
,
Adv. Funct. Mater.
19
,
610
(
2009
).
12.
D. P.
Sellan
,
E. S.
Landry
,
J. E.
Turney
,
A. J. H.
McGaughey
, and
C. H.
Amon
,
Phys. Rev. B
81
,
214305
(
2010
).
13.
E. S.
Landry
and
A. J. H.
McGaughey
,
Phys. Rev. B
80
,
165304
(
2009
).
14.
M.
Hu
,
P.
Keblinski
, and
P. K.
Schelling
,
Phys. Rev. B
79
,
104305
(
2009
).
15.
P. K.
Schelling
,
S. R.
Phillpot
, and
P.
Keblinski
,
J. Appl. Phys.
95
,
6082
(
2004
).
16.
Z.-Y.
Ong
and
E.
Pop
,
Phys. Rev. B
81
,
155408
(
2010
).
17.
S.
Shin
,
M.
Kaviany
,
T.
Desai
, and
R.
Bonner
,
Phys. Rev. B
82
,
81302
R (
2010
).
18.
R. J.
Stevens
,
L. V.
Zhigilei
, and
P. M.
Norris
,
Int. J. Heat Mass Transfer
50
,
3977
(
2007
).
19.
R. J.
Stevens
,
P. M.
Norris
, and
L. V.
Zhigilei
,
Proc. IMECE04
2004
,
60334
.
20.
W. J.
Evans
,
M.
Shen
, and
P.
Keblinski
,
Appl. Phys. Lett.
100
,
261908
(
2012
).
21.
C. F.
Carlborg
,
J.
Shiomi
, and
S.
Maruyama
,
Phys. Rev. B
78
,
205406
(
2008
).
22.
S.
Merabia
and
K.
Termentzidis
,
Phys. Rev. B
86
,
094303
(
2012
).
23.
A. S.
Henry
and
G.
Chen
,
J. Comput. Theor. Nanosci.
5
,
141
(
2008
).
24.
G.
Chen
,
Nanoscale Energy Transport and Conversion
(
Oxford University Press
,
Oxford, UK
,
2005
).
25.
Y.
Wang
,
X.
Ruan
, and
A.
Roy
,
Phys. Rev. B
85
,
205311
(
2012
).
26.
X. W.
Zhou
,
S.
Aubry
,
R. E.
Jones
,
A.
Greenstein
, and
P. K.
Schelling
,
Phys. Rev. B
79
,
115201
(
2009
).
27.
X. W.
Zhou
,
R. E.
Jones
, and
S.
Aubry
,
Phys. Rev. B
81
,
73304
(
2010
).
28.
X. W.
Zhou
,
R. E.
Jones
, and
S.
Aubry
,
Phys. Rev. B
81
,
155321
(
2010
).
29.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. B
31
,
5262
(
1985
).
30.
A.
Béré
and
A.
Serra
,
Phys. Rev. B
65
,
205323
(
2002
).
31.
A.
Béré
and
A.
Serra
,
Philos. Mag.
86
,
2159
(
2006
).
32.
X. W.
Zhou
,
R. E.
Jones
,
C. J.
Kimmer
,
J. C.
Duda
, and
P. E.
Hopkins
,
Phys. Rev. B
87
,
094303
(
2013
).
33.
J. C.
Duda
,
T. S.
English
,
E. S.
Piekos
,
T. E.
Beechem
,
T. W.
Kenny
, and
P. E.
Hopkins
,
J. Appl. Phys.
112
,
073519
(
2012
).
34.
D. V.
Matyushov
and
R.
Schmid
,
J. Chem. Phys.
104
,
8627
(
1996
).
35.
P. K.
Schelling
,
S. R.
Phillpot
, and
P.
Keblinski
,
Phys. Rev. B
65
,
144306
(
2002
).
36.
J. C.
Duda
,
C. J.
Kimmer
,
W. A.
Soffa
,
X. W.
Zhou
,
R. E.
Jones
, and
P. E.
Hopkins
,
J. Appl. Phys.
112
,
093515
(
2012
).
37.
T.
Ikeshoji
and
B.
Hafskjold
,
Mol. Phys.
81
,
251
(
1994
).
38.
P.
Jund
and
R.
Jullien
,
Phys. Rev. B
59
,
13707
(
1999
).
39.
D. S.
Ivanov
and
L. V.
Zhigilei
,
Phys. Rev. B
68
,
064114
(
2003
).
40.
L.
Koci
,
E. M.
Bringa
,
D. S.
Ivanov
,
J.
Hawreliak
,
J.
McNaney
,
A.
Higginbotham
,
L. V.
Zhigilei
,
A. B.
Belonoshko
,
B.
Remington
, and
R.
Ahuja
,
Phys. Rev. B
74
,
012101
(
2006
).
41.
M. I.
Kaganov
,
I. M.
Lifshits
, and
L. V.
Tanatarov
,
Zh. Eksp. Teor. Fiz.
31
,
232
(
1956
).
42.
R. E.
Jones
,
J. A.
Templeton
,
G. J.
Wagner
,
D.
Olmsted
, and
N. A.
Modine
,
Int. J. Numer. Methods Eng.
83
,
940
(
2010
).
43.
A.
Majumdar
and
P.
Reddy
,
Appl. Phys. Lett.
84
,
4768
(
2004
).
44.
G. D.
Mahan
,
Phys. Rev. B
79
,
075408
(
2009
).
45.
Z.
Lin
,
L. V.
Zhigilei
, and
V.
Celli
,
Phys. Rev. B
77
,
075133
(
2008
).
46.
T. S.
English
,
J. C.
Duda
,
J. L.
Smoyer
,
D. A.
Jordan
,
P. M.
Norris
, and
L. V.
Zhigilei
,
Phys. Rev. B
85
,
035438
(
2012
).
47.
X.
Yang
,
A. C.
To
, and
R.
Tian
,
Nanotechnology
21
,
155704
(
2010
).
48.
X. W.
Zhou
and
R. E.
Jones
,
J. Phys.: Condensed Matt.
24
,
325804
(
2012
).
49.
Y. G.
Yoon
,
R.
Car
,
D. J.
Srolovitz
, and
S.
Scandolo
,
Phys. Rev. B
70
,
12302
(
2004
).
50.
E. S.
Landry
,
M. I.
Hussein
, and
A. J. H.
McGaughey
,
Phys. Rev. B
77
,
184302
(
2008
).
51.
J. C.
Duda
,
R.
Cheato
,
B. M.
Foley
,
C.
Constantin
,
C. -Y. P.
Yang
,
R.
Jones
, and
P. E.
Hopkins
, “Thermal conductance across metal:GaN interfaces” (unpublished).
You do not currently have access to this content.