We report reduced contact resistance of single-layer graphene devices by using ultraviolet ozone treatment to modify the metal/graphene contact interface. The devices were fabricated from mechanically transferred, chemical vapor deposition grown single layer graphene. Ultraviolet ozone treatment of graphene in the contact regions as defined by photolithography and prior to metal deposition was found to reduce interface contamination originating from incomplete removal of poly(methyl-methacrylate) and photoresist. Our control experiment shows that exposure times up to 10 min did not introduce significant disorder in the graphene as characterized by Raman spectroscopy. By using the described approach, contact resistance of less than 200 Ω μm was achieved for 25 min ultraviolet ozone treatment, while not significantly altering the electrical properties of the graphene channel region of devices.

1.
International Technology Roadmap for Semiconductors, 2009 ed. (
2009
).
2.
3.
A.
Venugopal
,
L.
Colombo
, and
E. M.
Vogel
,
Solid State Commun.
152
,
1311
(
2012
).
4.
K.
Nagashio
,
T.
Nishimura
,
K.
Kita
, and
A.
Toriumi
,
Tech. Dig.–Int. Electron Devices Meet.
2009
,
565
568
.
5.
P.
Blake
,
R.
Yang
,
S. V.
Morozov
,
F.
Schedin
,
L. A.
Ponomarenko
,
A. A.
Zhukov
,
R. R.
Nair
,
I. V.
Grigorieva
,
K. S.
Novoselov
, and
A. K.
Geim
,
Solid State Commun.
149
,
1068
(
2009
).
6.
A.
Hsu
,
H.
Wang
,
K. K.
Kim
,
J.
Kong
, and
T.
Palacios
,
IEEE Electron Device Lett.
32
,
1008
(
2011
).
7.
A. D.
Franklin
,
S.
Han
,
A. A.
Bol
, and
V.
Perebeinos
,
IEEE Electron Device Lett.
33
,
17
(
2012
).
8.
F.
Xia
,
V.
Perebeinos
,
Y.
Lin
,
Y.
Wu
, and
Ph.
Avouris
,
Nat. Nanotechnol.
6
,
179
(
2011
).
9.
J. S.
Moon
,
M.
Antcliffe
,
H. C.
Seo
,
D.
Curtis
,
S.
Lin
,
A.
Schmitz
,
I.
Milosavljevic
,
A. A.
Kiselev
,
R. S.
Ross
,
D. K.
Gaskill
,
P. M.
Campbell
,
R. C.
Fitch
,
K.-M.
Lee
, and
P.
Asbeck
,
Appl. Phys. Lett.
100
,
203512
(
2012
).
10.
J. A.
Robinson
,
M.
LaBella
,
M.
Zhu
,
M.
Hollander
,
R.
Kasarda
,
Z.
Hughes
,
K.
Trumbull
,
R.
Cavalero
, and
D.
Snyder
,
Appl. Phys. Lett.
98
,
053103
(
2011
).
11.
J.
Chan
,
A.
Venugopal
,
A.
Pirkle
,
S.
McDonnell
,
D.
Hinojos
,
C. W.
Magnuson
,
R. S.
Ruoff
,
L.
Colombo
,
R. M.
Wallace
, and
E. M.
Vogel
,
ACS Nano
6
,
3224
(
2012
).
12.
G.
Giovannetti
,
P. A.
Khomyakov
,
G.
Brocks
,
V. M.
Karpan
,
J.
van den Brink
, and
P. J.
Kelly
,
Phys. Rev. Lett.
101
,
026803
(
2008
).
13.
M.
Ishigami
,
J. H.
Chen
,
W. G.
Cullen
,
M. S.
Fuhrer
, and
E. D.
Williams
,
Nano Lett.
7
,
1643
(
2007
).
14.
T.
Kwon
,
H.
An
,
Y.-S.
Seo
, and
J.
Jung
,
Jpn. J. Appl. Phys., Part 1
51
,
04DN04
(
2012
).
15.
Y.
Dan
,
Y.
Lu
,
N. J.
Kybert
,
Z.
Luo
, and
A. T.
Charlie Johnson
,
Nano Lett.
9
,
1472
(
2009
).
16.
T.
Lohmann
,
K.
von Klitzing
, and
J. H.
Smet
,
Nano Lett.
9
,
1973
(
2009
).
17.
J. R.
Vig
,
J. Vac. Sci. Technol. A
3
,
1027
(
1985
).
18.
K. L.
Grosse
,
M.-H.
Bae
,
F.
Lian
,
E.
Pop
, and
W. P.
King
,
Nat. Nanotechnol.
6
,
287
(
2011
).
19.
D. K.
Schroder
,
Semiconductor Material and Device Characterization
, 3rd ed. (
John Wiley & Sons, Inc.
,
United States
,
2006
).
20.
X.
Liang
,
B. A.
Sperling
,
I.
Calizo
,
G.
Cheng
,
C. A.
Hacker
,
Q.
Zhang
,
Y.
Obeng
,
K.
Yan
,
H.
Peng
,
Q.
Li
,
X.
Zhu
,
H.
Yuan
,
A. R.
Hight Walker
,
Z.
Liu
,
L.
Peng
, and
C. A.
Richter
,
ACS Nano
5
,
9144
(
2011
).
21.
L. M.
Malard
,
M. A.
Pimenta
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
,
Phys. Rep.
473
,
51
(
2009
).
22.
M. S.
Dresselhaus
,
A.
Jorio
,
M.
Hofmann
,
G.
Dresselhaus
, and
R.
Saito
,
Nano Lett.
10
,
751
(
2010
).
23.
L. G.
Cançado
,
K.
Takai
,
T.
Enoki
,
M.
Endo
,
Y. A.
Kim
,
H.
Mizusaki
,
A.
Jorio
,
L. N.
Coelho
,
R.
Magalhães-Paniago
, and
M. A.
Pimenta
,
Appl. Phys. Lett.
88
,
163106
(
2006
).
24.
F.
Gunes
,
G. H.
Han
,
H.-J.
Shin
,
S. Y.
Lee
,
M.
Jin
,
D. L.
Duong
,
S. J.
Chae
,
E. S.
Kim
,
F.
Yao
,
A.
Benayad
,
J.-Y.
Choi
, and
Y. H.
Lee
,
NANO
6
,
409
(
2011
).
25.
T.
Mueller
,
F.
Xia
,
M.
Freitag
,
J.
Tsang
, and
Ph.
Avouris
,
Phys. Rev. B
79
,
245430
(
2009
).
26.
S.
Kim
,
J.
Nah
,
I.
Jo
,
D.
Shahrjerdi
,
L.
Colombo
,
Z.
Yao
,
E.
Tutuc
, and
S. K.
Banerjee
,
Appl. Phys. Lett.
94
,
062107
(
2009
).
27.
See supplementary material at http://dx.doi.org/10.1063/1.4804643 for UVO treatment details, surface roughness, and Raman D-to-G peak intensity ratio changes during the UVO treatment process.

Supplementary Material

You do not currently have access to this content.