Ultra-thin MoS2 has recently emerged as a promising two-dimensional semiconductor for electronic and optoelectronic applications. Here, we report high mobility (>60 cm2/Vs at room temperature) field-effect transistors that employ unencapsulated single-layer MoS2 on oxidized Si wafers with a low level of extrinsic contamination. While charge transport in the sub-threshold regime is consistent with a variable range hopping model, monotonically decreasing field-effect mobility with increasing temperature suggests band-like transport in the linear regime. At temperatures below 100 K, temperature-independent mobility is limited by Coulomb scattering, whereas, at temperatures above 100 K, phonon-limited mobility decreases as a power law with increasing temperature.

1.
Q. H.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
,
Nat. Nanotechnol.
7
,
699
(
2012
).
2.
H. S. S. R.
Matte
,
A.
Gomathi
,
A. K.
Manna
,
D. J.
Late
,
R.
Datta
,
S. K.
Pati
, and
C. N. R.
Rao
,
Angew. Chem.
122
,
4153
(
2010
).
3.
W.
Bao
,
X.
Cai
,
D.
Kim
,
K.
Sridhara
, and
M. S.
Fuhrer
,
Appl. Phys. Lett.
102
,
042104
(
2013
).
4.
N.
Pradhan
,
D.
Rhodes
,
Q.
Zhang
,
S.
Talapatra
,
M.
Terrones
,
P.
Ajayan
, and
L.
Balicas
,
Appl. Phys. Lett.
102
,
123105
(
2013
).
5.
S.
Kim
,
A.
Konar
,
W.-S.
Hwang
,
J. H.
Lee
,
J.
Lee
,
J.
Yang
,
C.
Jung
,
H.
Kim
,
J.-B.
Yoo
, and
J.-Y.
Choi
,
Nat. Commun.
3
,
1011
(
2012
).
6.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
V.
Giacometti
, and
A.
Kis
,
Nat. Nanotechnol.
6
,
147
(
2011
).
7.
Y.
Zhang
,
J.
Ye
,
Y.
Matsuhashi
, and
Y.
Iwasa
,
Nano Lett.
12
,
1136
(
2012
).
8.
M.-W.
Lin
,
L.
Liu
,
Q.
Lan
,
X.
Tan
,
K. S.
Dhindsa
,
P.
Zeng
,
V. M.
Naik
,
M. M.-C.
Cheng
, and
Z.
Zhou
,
J. Phys. D: Appl. Phys.
45
,
345102
(
2012
).
9.
H.
Wang
,
L.
Yu
,
Y.-H.
Lee
,
Y.
Shi
,
A.
Hsu
,
M. L.
Chin
,
L.-J.
Li
,
M.
Dubey
,
J.
Kong
, and
T.
Palacios
,
Nano Lett.
12
,
4674
(
2012
).
10.
K. F.
Mak
,
C.
Lee
,
J.
Hone
,
J.
Shan
, and
T. F.
Heinz
,
Phys. Rev. Lett.
105
,
136805
(
2010
).
11.
A.
Splendiani
,
L.
Sun
,
Y.
Zhang
,
T.
Li
,
J.
Kim
,
C.-Y.
Chim
,
G.
Galli
, and
F.
Wang
,
Nano Lett.
10
,
1271
(
2010
).
12.
H.
Zeng
,
J.
Dai
,
W.
Yao
,
D.
Xiao
, and
X.
Cui
,
Nat. Nanotechnol.
7
,
490
(
2012
).
13.
K. F.
Mak
,
K.
He
,
J.
Shan
, and
T. F.
Heinz
,
Nat. Nanotechnol.
7
,
494
(
2012
).
14.
T.
Cao
,
G.
Wang
,
W.
Han
,
H.
Ye
,
C.
Zhu
,
J.
Shi
,
Q.
Niu
,
P.
Tan
,
E.
Wang
, and
B.
Liu
,
Nat. Commun.
3
,
887
(
2012
).
15.
K. F.
Mak
,
K.
He
,
C.
Lee
,
G. H.
Lee
,
J.
Hone
,
T. F.
Heinz
, and
J.
Shan
,
Nat. Mater.
12
,
207
(
2012
).
16.
W.
Choi
,
M. Y.
Cho
,
A.
Konar
,
J. H.
Lee
,
G. B.
Cha
,
S. C.
Hong
,
S.
Kim
,
J.
Kim
,
D.
Jena
, and
J.
Joo
,
Adv. Mater.
24
,
5832
(
2012
).
17.
H. S.
Lee
,
S.-W.
Min
,
Y.-G.
Chang
,
M. K.
Park
,
T.
Nam
,
H.
Kim
,
J. H.
Kim
,
S.
Ryu
, and
S.
Im
,
Nano Lett.
12
,
3695
(
2012
).
18.
S.
Ghatak
,
A. N.
Pal
, and
A.
Ghosh
,
ACS Nano
5
,
7707
(
2011
).
19.
B.
Radisavljevic
and
A.
Kis
, e-print arXiv:1301.4947v1.
20.
D. J.
Late
,
B.
Liu
,
H. S. S. R.
Matte
,
V. P.
Dravid
, and
C. N. R.
Rao
,
ACS Nano
6
,
5635
(
2012
).
21.
K.
Novoselov
,
D.
Jiang
,
F.
Schedin
,
T.
Booth
,
V.
Khotkevich
,
S.
Morozov
, and
A.
Geim
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
10451
(
2005
).
22.
H.
Liu
and
P. D.
Ye
,
IEEE Electron Device Lett.
33
,
546
(
2012
).
23.
R.
Fivaz
and
E.
Mooser
,
Phys. Rev.
163
,
743
(
1967
).
24.
A. J.
Grant
,
T. M.
Griffiths
,
G. D.
Pitt
, and
A. D.
Yoffe
,
J. Phys. C: Solid State Phys.
8
,
L17
(
1975
).
25.
C.
Lee
,
H.
Yan
,
L. E.
Brus
,
T. F.
Heinz
,
J.
Hone
, and
S.
Ryu
,
ACS Nano
4
,
2695
(
2010
).
26.
D. J.
Late
,
B.
Liu
,
H. S. S. R.
Matte
,
C. N. R.
Rao
, and
V. P.
Dravid
,
Adv. Funct. Mater.
22
,
1894
(
2012
).
27.
H.
Liu
,
A. T.
Neal
, and
P. D.
Ye
,
ACS Nano
6
,
8563
(
2012
).
28.
B.
Radisavljevic
and
A.
Kis
,
Nat. Nanotechnol.
8
,
147
(
2013
).
29.
H.
Qiu
,
L.
Pan
,
Z.
Yao
,
J.
Li
,
Y.
Shi
, and
X.
Wang
,
Appl. Phys. Lett.
100
,
123104
(
2012
).
30.
N. F.
Mott
and
E. A.
Davis
,
Electronic Processes in Non-Crystalline Materials
(
OUP
,
Oxford
,
2012
).
31.
T.
Tansley
and
C.
Foley
,
Electron. Lett.
20
,
1066
(
1984
).
32.
H.
Ehrenreich
,
J. Phys. Chem. Solids
12
,
97
(
1959
).
33.
N. D.
Arora
,
J. R.
Hauser
, and
D. J.
Roulston
,
IEEE Trans. Electron Devices
29
,
292
(
1982
).
34.
H.
Steinberg
,
D. R.
Gardner
,
Y. S.
Lee
, and
P.
Jarillo-Herrero
,
Nano Lett.
10
,
5032
(
2010
).
35.
J.-H.
Chen
,
C.
Jang
,
S.
Xiao
,
M.
Ishigami
, and
M. S.
Fuhrer
,
Nat. Nanotechnol.
3
,
206
(
2008
).
36.
T.
Sakanoue
and
H.
Sirringhaus
,
Nature Mater.
9
,
736
(
2010
).
37.
E.
Arnold
,
Appl. Phys. Lett.
25
,
705
(
1974
).
38.
A.
Hartstein
and
A. B.
Fowler
,
J. Phys. C: Solid State Phys.
8
,
L249
(
1975
).
39.
K.
Kaasbjerg
,
K. S.
Thygesen
, and
K. W.
Jacobsen
,
Phys. Rev. B
85
,
115317
(
2012
).
40.
S.
Larentis
,
B.
Fallahazad
, and
E.
Tutuc
,
Appl. Phys. Lett.
101
,
223104
(
2012
).
41.
42.
M.
Glicksman
,
Phys. Rev.
111
,
125
(
1958
).
43.
D.
Long
and
J.
Myers
,
Phys. Rev.
115
,
1107
(
1959
).
44.
45.
C.
Dean
,
A.
Young
,
I.
Meric
,
C.
Lee
,
L.
Wang
,
S.
Sorgenfrei
,
K.
Watanabe
,
T.
Taniguchi
,
P.
Kim
,
K.
Shepard
, and
J.
Hone
,
Nat. Nanotechnol.
5
,
722
(
2010
).
46.
See supplementary material at http://dx.doi.org/10.1063/1.4803920 for details on fabrication, Raman characterization, and additional data analysis.

Supplementary Material

You do not currently have access to this content.