Ultra-thin MoS2 has recently emerged as a promising two-dimensional semiconductor for electronic and optoelectronic applications. Here, we report high mobility (>60 cm2/Vs at room temperature) field-effect transistors that employ unencapsulated single-layer MoS2 on oxidized Si wafers with a low level of extrinsic contamination. While charge transport in the sub-threshold regime is consistent with a variable range hopping model, monotonically decreasing field-effect mobility with increasing temperature suggests band-like transport in the linear regime. At temperatures below 100 K, temperature-independent mobility is limited by Coulomb scattering, whereas, at temperatures above 100 K, phonon-limited mobility decreases as a power law with increasing temperature.

Supplementary Material

You do not currently have access to this content.