We report, in this work, on unprecedented levels of parametric amplification in microelectromechanical resonators, operated in air, with integrated piezoelectric actuation and sensing capabilities. The method relies on an analytical/numerical understanding of the influence of geometrical nonlinearities inherent to the bridge-like configuration of the resonators. We provide analytical formulae to predict the performances of the parametric amplifier below the nonlinearity threshold, in terms of gain and quality factor (Q) enhancement. The analysis explains how to overcome this nonlinearity threshold by controlling the drive signals. It predicts that in theory, any Q-factor enhancement can be achieved. Experimental validation demonstrates a Q-factor enhancement by up to a factor 14 in air.

1.
B.
Ilic
,
Y.
Yang
, and
H. G.
Craighead
,
Appl. Phys. Lett.
85
,
2604
(
2004
).
2.
Y. T.
Yang
,
C.
Callegari
,
X. L.
Feng
,
K. L.
Ekinci
, and
M. L.
Roukes
,
Nano Lett.
6
,
583
(
2006
).
3.
V. B.
Chivukula
and
J. F.
Rhoads
,
J. Sound Vib.
329
,
4313
(
2010
).
4.
T.
Alava
,
F.
Mathieu
,
L.
Mazenq
,
C.
Soyer
,
D.
Remiens
, and
L.
Nicu
,
J. Micromech. Microeng.
20
,
075014
(
2010
).
5.
T.
Manzaneque
,
J.
Hernando-García
,
A.
Ababneh
,
P.
Schwarz
,
H.
Seidel
,
U.
Schmid
, and
J. L.
Sánchez-Rojas
,
J. Micromech. Microeng.
21
,
025007
(
2011
).
6.
D.
Rugar
and
P.
Grütter
,
Phys. Rev. Lett.
67
,
699
(
1991
).
7.
D. W.
Carr
,
S.
Evoy
,
L.
Sekaric
,
H. G.
Craighead
, and
J. M.
Parpia
,
Appl. Phys. Lett.
77
,
1545
(
2000
).
8.
R. B.
Karabalin
,
X. L.
Feng
, and
M. L.
Roukes
,
Nano Lett.
9
,
3116
(
2009
).
9.
R. B.
Karabalin
,
S. C.
Masmanidis
, and
M. L.
Roukes
,
Appl. Phys. Lett.
97
,
183101
(
2010
).
10.
I.
Mahboob
and
H.
Yamaguchi
,
Appl. Phys. Lett.
92
,
173109
(
2008
).
11.
Z.
Yie
,
N. J.
Miller
,
S. W.
Shaw
, and
K. L.
Turner
,
J. Micromech. Microeng.
22
,
035004
(
2012
).
12.
C.-C.
Wu
and
Z.
Zhong
,
Appl. Phys. Lett.
99
,
083110
(
2011
).
13.
J. F.
Rhoads
,
S. W.
Shaw
,
K. L.
Turner
, and
R.
Baskaran
,
J. Vib. Acoust.
127
,
423
(
2005
).
14.
W.
Zhang
and
K. L.
Turner
,
Sens. Actuators, A
122
,
23
(
2005
).
15.
R. B.
Karabalin
,
R.
Lifshitz
,
M. C.
Cross
,
M. H.
Matheny
,
S. C.
Masmanidis
, and
M. L.
Roukes
,
Phys. Rev. Lett.
106
,
094102
(
2011
).
16.
I.
Mahboob
and
H.
Yamaguchi
,
Nat. Nanotechnol.
3
,
275
(
2008
).
17.
J. F.
Rhoads
and
S. W.
Shaw
,
Appl. Phys. Lett.
96
,
234101
(
2010
).
18.
J. M.
Nichol
,
E. R.
Hemesath
,
L. J.
Lauhon
, and
R.
Budakian
,
Appl. Phys. Lett.
95
,
123116
(
2009
).
19.
K. L.
Ekinci
,
Y. T.
Yang
, and
M. L.
Roukes
,
J. Appl. Phys.
95
,
2682
(
2004
).
20.
21.
F.
Mathieu
,
F.
Larramendy
,
D.
Dezest
,
C.
Huang
,
G.
Lavallee
,
S.
Miller
,
C. M.
Eichfeld
,
W.
Mansfield
,
S.
Trolier-McKinstry
, and
L.
Nicu
, “
Reducing parasitic effects of actuation and sensing schemes for piezoelectric microelectromechanical resonators
,”
Microelectronic Eng.
(in press) (
2013
).
22.
J.
Ducarne
,
O.
Thomas
, and
J.-F.
Deü
,
J. Sound Vib.
331
,
3286
(
2012
).
23.
R.
Lifshitz
and
M. C.
Cross
, “
Nonlinear dynamics of nanomechanical and micromechanical resonators
,” in
Reviews of Nonlinear Dynamics and Complexity
(
Wiley
,
2008
), Vol.
1
, p.
52
.
24.
A.
Lazarus
,
O.
Thomas
, and
J.-F.
Deü
,
Finite Elem. Anal. Des.
49
,
35
(
2012
).
25.
In fact, a quadratic nonlinear term βu2 should be included in Eq. (1). Not considering it here is fully justified by the concept of nonlinear modes, where an efficient one degree of freedom approximation of the dynamics around one resonance leads to a normal form without quadratic nonlinearities. (see
C.
Touzé
,
O.
Thomas
, and
A.
Chaigne
,
J. Sound Vib.
273
,
77
(
2004
) and
C.
Touzé
and
O.
Thomas
,
Int. J. Non-Linear Mech.
41
,
678
(
2006
).
26.
U.
von Wagner
and
P.
Hagedorn
,
J. Sound Vib.
256
,
861
(
2002
).
27.
S. C.
Stanton
,
A.
Erturk
,
B. P.
Mann
, and
D. J.
Inman
,
J. Appl. Phys.
108
,
074903
(
2010
).
28.
F.
Xu
,
S.
Trolier-McKinstry
,
W.
Ren
,
B. M.
Xu
,
Z. L.
Xie
, and
K. L.
Hemker
,
J. Appl. Phys.
89
,
1336
(
2001
).
29.
F.
Griggio
,
S.
Jesse
,
A.
Kumar
,
O.
Ovchinnikov
,
H.
Kim
,
T. N.
Jackson
,
D.
Damjanovic
,
S. V.
Kalinin
, and
S.
Trolier-McKinstry
,
Phys. Rev. Lett.
108
,
157604
(
2012
).
30.
B.
Cochelin
and
C.
Vergez
,
J. Sound Vib.
324
,
243
(
2009
).
31.
A.
Lazarus
and
O.
Thomas
,
C. R. Mec.
338
,
510
(
2010
).
32.
A. H.
Nayfeh
and
D. T.
Mook
,
Nonlinear Oscillations
(
Wiley
,
1979
).
33.
V.
Kaajakari
,
T.
Mattila
,
A.
Lipsanen
, and
A.
Oja
,
Sens. Actuators, A
120
,
64
(
2005
).
34.
N.
Kacem
,
S.
Hentz
,
D.
Pinto
,
B.
Reig
, and
V.
Nguyen
,
Nanotechnology
20
,
275501
(
2009
).
35.
C.
Ayela
,
L.
Nicu
,
C.
Soyer
,
É.
Cattan
, and
C.
Bergaud
,
J. Appl. Phys.
100
,
054908
(
2006
).
36.
It is known that the curvature of an arch or a shell, which breaks the symmetry of the transverse stiffness, leads, in general, to a softening nonlinear effect. In contrast, a plate or a straight beam always shows a hardening nonlinear effect.
You do not currently have access to this content.