Nanofluids offer a potential breakthrough as next-generation heat transfer fluids since they offer exciting new possibilities to enhance heat transfer performance compared to pure liquids. A major drawback for using nanofluids in practical applications is difficulty in maintaining their stability due to deposition on surfaces. In this study, we propose and experimentally investigate a magnetic actuation scheme to avoid this deposition. Two-phase heat transfer characteristics of the designed system have been experimentally investigated with magnetic actuation and compared to the results without magnetic actuation. Two phase average heat transfer enhancement observed with the suggested system was 17%. The average single phase enhancement is found as 29% with magnetic actuation. It was observed that magnetically actuated nanoparticles neither form any clusters nor precipitate after the experiments.

1.
X. Q.
Wang
and
A. S.
Mujumdar
,
Int. J. Therm. Sci.
46
,
1
(
2007
).
2.
W.
Daungthongsuk
and
S.
Wongwises
,
Renewable Sustainable Energy Rev.
11
,
797
(
2007
).
3.
S. J.
Palm
,
G.
Roy
, and
C. T.
Nguyen
,
Appl. Therm. Eng.
26
,
2209
(
2006
).
4.
S. E. B.
Ma'ga
,
C. T.
Nguyen
,
N.
Galanis
,
G.
Roy
,
T.
Mar
, and
M.
Coqueux
,
Int. J. Numer. Methods Heat Fluid Flow
16
,
275
(
2006
).
5.
S.
Lee
,
S. U.-S.
Choi
,
S.
Li
, and
J. A.
Eastman
,
J. Heat Transfer
121
,
280
(
1999
).
6.
J. A.
Eastman
,
S. U. S.
Choi
,
S.
Li
,
W.
Yu
, and
L. J.
Thompson
,
Appl. Phys. Lett.
78
,
718
(
2001
).
7.
J.-Y.
Jung
,
H.-S.
Oh
, and
H.-Y.
Kwak
,
Int. J. Heat Mass Transfer
52
,
466
(
2009
).
8.
S. P.
Jang
and
S. U. S.
Choi
,
Appl. Phys. Lett.
84
,
4316
(
2004
).
9.
J.
Buongiorno
,
J. Heat Transfer
128
,
240
(
2006
).
10.
Y.
Xuan
and
Q.
Li
,
Int. J. Heat Fluid Flow
21
,
58
(
2000
).
11.
S.
Kakac
and
A.
Pramuanjaroenkij
,
Int. J. Heat Mass Transfer
52
,
3187
(
2009
).
12.
L.
Godson
,
B.
Raja
,
D. M.
Lal
, and
S.
Wongwises
,
Renewable Sustainable Energy Rev.
14
,
629
(
2010
).
13.
C.
Saltiel
,
Q.
Chen
,
S.
Manickavasagam
,
L. S.
Schadler
,
R. W.
Siegel
, and
M.
Mengüc
,
J. Nanopart. Res.
6
,
35
(
2004
).
14.
C.
Saltiel
,
S.
Manickavasagam
,
M. P.
Mengüc
, and
R.
Andrews
,
J. Opt. Soc. Am. A
22
,
1546
(
2005
).
15.
M.
Kozan
,
J.
Thangala
,
R.
Bogale
,
M. P.
Mengüc
, and
M. K.
Sunkara
,
J. Nanopart. Res.
10
,
599
(
2008
).
16.
D.
Wen
and
Y.
Ding
,
Int. J. Heat Mass Transfer
47
,
5181
(
2004
).
17.
S. Z.
Heris
,
S.
Etemad
, and
M. N.
Esfahany
,
Int. Commun. Heat Mass Transfer
33
,
529
(
2006
).
18.
S. Z.
Heris
,
M. N.
Esfahany
, and
S.
Etemad
,
Int. J. Heat Fluid Flow
28
,
203
(
2007
).
19.
W.
Williams
,
J.
Buongiorno
, and
L.-W.
Hu
,
J. Heat Transfer
130
,
042412
(
2008
).
20.
Y.
Xuan
and
Q.
Li
,
J. Heat Transfer
125
,
151
(
2003
).
21.
N.
Putra
,
W.
Roetzel
, and
S.
Das
,
Heat Mass Transfer
39
,
775
(
2003
).
22.
V.
Trisaksri
and
S.
Wongwises
,
Int. J. Heat Mass Transfer
52
,
1582
(
2009
).
23.
S. K.
Das
,
N.
Putra
, and
W.
Roetzel
,
Int. J. Heat Mass Transfer
46
,
851
(
2003
).
24.
I. C.
Bang
and
S. H.
Chang
,
Int. J. Heat Mass Transfer
48
,
2407
(
2005
).
25.
S. M.
You
,
J. H.
Kim
, and
K. H.
Kim
,
Appl. Phys. Lett.
83
,
3374
(
2003
).
26.
A.
Bilgin
,
E.
Kurtoglu
,
H. C.
Erk
,
M.
Sesen
,
H. F.
Yagci-Acar
,
A.
Kubilay
, and
A.
Kosar
, in International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2011–58222,
2011
.
27.
A.
Bilgin
,
E.
Kurtoglu
,
H. C.
Erk
,
H. F.
Yagci-Acar
,
A.
Kubilay
, and
A.
Kosar
, in Thermal and Materials Nanoscience and Nanotechnology, TMNN-2011/054,
2011
.
28.
M.
Sesen
,
S.
Ulun
,
H. C.
Su
,
B.
Bahceci
,
H. F.
Yagci-Acar
, and
A.
Kosar
, in International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2010-30728,
2010
.
29.
E.
Kurtoglu
,
A.
Bilgin
,
M.
Sesen
,
H. F.
Yagci-Acar
, and
A.
Kosar
, in 3rd Micro and Nano Flows Conference,
2011
.
30.
E.
Kurtoglu
,
A.
Bilgin
,
M.
Sesen
,
B.
Misirlioglu
,
M.
Yildiz
,
H. F. Y.
Acar
, and
A.
Kosar
,
Microfluid. Nanofluid.
13
,
683
(
2012
).
31.
L.
Mao
and
H.
Koser
, in Industrial Electronics Society 31st Annual Conference of IEEE, IECON05,
2005
.
32.
M.
Sesen
,
Y.
Teksen
,
K.
Sendur
,
M. P.
Mengüc
,
H.
Ozturk
,
H. F. Y.
Acar
, and
A.
Kosar
,
J. Appl. Phys.
112
,
064320
(
2012
).
33.
P.
Wang
,
W.
Chiu
,
C.
Lee
, and
T.
Young
,
J. Polym. Sci., Part A: Polym. Chem.
42
,
5695
(
2004
).
34.
H. F.
Yagci-Acar
,
R. S.
Garaas
,
F.
Syud
,
P.
Bonitatebus
, and
A. M.
Kulkarni
,
J. Magn. Magn. Mater.
293
,
1
(
2005
).
35.
S.
Laurent
,
D.
Forge
,
M.
Port
,
A.
Roch
,
C.
Robic
,
L. V.
Elst
, and
R. N.
Muller
,
Chem. Rev.
108
,
2064
(
2008
).
36.
L.
Fu
,
V. P.
Dravid
, and
D.
Johnson
,
Appl. Surf. Sci.
181
,
173
(
2001
).
37.
J.
Nowak
and
S.
Odenbach
,
IEEE Trans. Magn.
49
,
208
(
2013
).
38.
M. I.
Shliomis
,
Sov. Phys. Usp.
17
,
153
(
1974
).
39.
A. Y.
Zubarev
,
S.
Odenbach
, and
J.
Fleischer
,
J. Magn. Magn. Mater.
252
,
241
(
2002
).
40.
J.-C.
Bacri
,
R.
Perzynski
,
M. I.
Shliomis
, and
G. I.
Burde
,
Phys. Rev. Lett.
75
,
2128
(
1995
).
41.
42.
J.-C.
Bacri
,
A. O.
Cebers
, and
R.
Perzynski
,
Phys. Rev. Lett.
72
,
2705
(
1994
).
43.
F.
Gazeau
,
C.
Baravian
,
J.-C.
Bacri
,
R.
Perzynski
, and
M. I.
Shliomis
,
Phys. Rev. E
56
,
614
(
1997
).
You do not currently have access to this content.