We present non-conventional electron spin resonance (ESR) experiments based on microfabricated superconducting Nb thin film waveguides. A very broad frequency range, from 0.5 to 40 GHz, becomes accessible at low temperatures down to 1.6 K and in magnetic fields up to 1.4 T. This allows for an accurate inspection of the ESR absorption position in the frequency domain, in contrast to the more common observation as a function of magnetic field. We demonstrate the applicability of frequency-swept ESR on atoms in ruby as well as on organic radicals of the nitronyl-nitroxide family. Measurements between 1.6 and 30 K reveal a small frequency shift of the ESR and a resonance broadening below the critical temperature of Nb, which we both attribute to a modification of the magnetic field configuration due to the appearance of shielding supercurrents in the waveguide.
Skip Nav Destination
,
,
,
,
,
,
Article navigation
22 April 2013
Research Article|
April 25 2013
Broadband electron spin resonance from 500 MHz to 40 GHz using superconducting coplanar waveguides Available to Purchase
Conrad Clauss;
Conrad Clauss
1
1. Physikalisches Institut, Universität Stuttgart
, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
Search for other works by this author on:
Daniel Bothner;
Daniel Bothner
2
Physikalisches Institut and Center for Collective Quantum Phenomena in LISA+, Universität Tübingen
, Auf der Morgenstelle 14, D-72076 Tübingen, Germany
Search for other works by this author on:
Dieter Koelle;
Dieter Koelle
2
Physikalisches Institut and Center for Collective Quantum Phenomena in LISA+, Universität Tübingen
, Auf der Morgenstelle 14, D-72076 Tübingen, Germany
Search for other works by this author on:
Reinhold Kleiner;
Reinhold Kleiner
2
Physikalisches Institut and Center for Collective Quantum Phenomena in LISA+, Universität Tübingen
, Auf der Morgenstelle 14, D-72076 Tübingen, Germany
Search for other works by this author on:
Lapo Bogani;
Lapo Bogani
1
1. Physikalisches Institut, Universität Stuttgart
, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
Search for other works by this author on:
Marc Scheffler;
Marc Scheffler
1
1. Physikalisches Institut, Universität Stuttgart
, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
Search for other works by this author on:
Martin Dressel
Martin Dressel
1
1. Physikalisches Institut, Universität Stuttgart
, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
Search for other works by this author on:
Conrad Clauss
1
Daniel Bothner
2
Dieter Koelle
2
Reinhold Kleiner
2
Lapo Bogani
1
Marc Scheffler
1
Martin Dressel
1
1
1. Physikalisches Institut, Universität Stuttgart
, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
2
Physikalisches Institut and Center for Collective Quantum Phenomena in LISA+, Universität Tübingen
, Auf der Morgenstelle 14, D-72076 Tübingen, Germany
Appl. Phys. Lett. 102, 162601 (2013)
Article history
Received:
October 14 2012
Accepted:
April 11 2013
Citation
Conrad Clauss, Daniel Bothner, Dieter Koelle, Reinhold Kleiner, Lapo Bogani, Marc Scheffler, Martin Dressel; Broadband electron spin resonance from 500 MHz to 40 GHz using superconducting coplanar waveguides. Appl. Phys. Lett. 22 April 2013; 102 (16): 162601. https://doi.org/10.1063/1.4802956
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Roadmap on photonic metasurfaces
Sebastian A. Schulz, Rupert. F. Oulton, et al.
Hard x-ray photoemission study of bulk single-crystalline InGaZnO4
Goro Shibata, Yunosuke Takahashi, et al.
Membrane phononic crystals for high- mechanical defect modes at MHz frequencies in piezoelectric aluminum nitride
Anastasiia Ciers, Laurentius Radit Nindito, et al.
Related Content
Observing electron spin resonance between 0.1 and 67 GHz at temperatures between 50 mK and 300 K using broadband metallic coplanar waveguides
Appl. Phys. Lett. (May 2015)
A perspective on slow-relaxing molecular magnets built from rare-earths and nitronyl-nitroxide building blocks (invited)
J. Appl. Phys. (April 2011)
Nanoscale constrictions in superconducting coplanar waveguide resonators
Appl. Phys. Lett. (October 2014)
Multi-frequency spin manipulation using rapidly tunable superconducting coplanar waveguide microresonators
Appl. Phys. Lett. (July 2017)
Optimized coplanar waveguide resonators for a superconductor–atom interface
Appl. Phys. Lett. (September 2016)