We present non-conventional electron spin resonance (ESR) experiments based on microfabricated superconducting Nb thin film waveguides. A very broad frequency range, from 0.5 to 40 GHz, becomes accessible at low temperatures down to 1.6 K and in magnetic fields up to 1.4 T. This allows for an accurate inspection of the ESR absorption position in the frequency domain, in contrast to the more common observation as a function of magnetic field. We demonstrate the applicability of frequency-swept ESR on Cr3+ atoms in ruby as well as on organic radicals of the nitronyl-nitroxide family. Measurements between 1.6 and 30 K reveal a small frequency shift of the ESR and a resonance broadening below the critical temperature of Nb, which we both attribute to a modification of the magnetic field configuration due to the appearance of shielding supercurrents in the waveguide.

1.
Ch. P.
Poole
, Jr.
,
Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques
, 2nd ed. (
Dover Publications, Inc.
,
1997
).
2.
S. K.
Misra
,
Multifrequency Electron Paramagnetic Resonance
(
Wiley-VCH
,
2011
).
3.
R.
Narkowicz
,
D.
Suter
, and
R.
Stonies
,
J. Magn. Reson.
175
,
275
(
2005
).
4.
R.
Narkowicz
,
D.
Suter
, and
I.
Niemeyer
,
Rev. Sci. Instrum.
79
,
084702
(
2008
).
5.
H.
Malissa
,
D. I.
Schuster
,
A. M.
Tyryshkin
,
A. A.
Houck
, and
S. A.
Lyon
,
Rev. Sci. Instrum.
84
,
025116
(
2013
).
6.
E. J.
Reijerse
,
Appl. Magn. Reson.
37
,
795
(
2010
).
7.
D.
Gatteschi
,
Lect. Notes Phys.
595
,
454
(
2002
).
8.
J.
van Slageren
,
S.
Vongtragool
,
B.
Gorshunov
,
A. A.
Mukhin
,
N.
Karl
,
J.
Krzystek
,
J.
Telser
,
A.
Müller
,
C.
Sangregorio
,
D.
Gatteschi
, and
M.
Dressel
,
Phys. Chem. Chem. Phys.
5
,
3837
(
2003
).
9.
Z. H.
Jang
,
B. J.
Suh
,
M.
Corti
,
L.
Cattaneo
,
D.
Hajny
,
F.
Borsa
, and
M.
Luban
,
Rev. Sci. Instrum.
79
,
046101
(
2008
).
10.
C.
Schlegel
,
M.
Dressel
, and
J.
van Slageren
,
Rev. Sci. Instrum.
81
,
093901
(
2010
).
11.
K. A.
Rubinson
,
Rev. Sci. Instrum.
60
,
392
(
1989
).
12.
D. I.
Schuster
,
A. P.
Sears
,
E.
Ginossar
,
L.
DiCarlo
,
L.
Frunzio
,
J. J. L.
Morton
,
H.
Wu
,
G. A. D.
Briggs
,
B. B.
Buckley
,
D. D.
Awschalom
, and
R. J.
Schoelkopf
,
Phys. Rev. Lett.
105
,
140501
(
2010
).
13.
G.
Goglio
,
S.
Pignard
,
A.
Radulescu
,
L.
Piraux
,
I.
Huynen
,
D.
Vanhoenacker
, and
A.
Vander Vorst
,
Appl. Phys. Lett.
75
,
1769
(
1999
).
14.
F.
Giesen
,
J.
Podbielski
,
T.
Korn
,
M.
Steiner
,
A.
van Staa
, and
D.
Grundler
,
Appl. Phys. Lett.
86
,
112510
(
2005
).
15.
Y.
Liu
,
L.
Chen
,
C. Y.
Tan
,
H. J.
Liu
, and
C. K.
Ong
,
Rev. Sci. Instrum.
76
,
063911
(
2005
).
16.
I.
Harward
,
T.
O'Keevan
,
A.
Hutchison
,
V.
Zagorodnii
, and
Z.
Celinski
,
Rev. Sci. Instrum.
82
,
095115
(
2011
).
17.
H.
Jger
,
A.
Koch
,
V.
Maus
,
H. W.
Spiess
, and
G.
Jeschke
,
J. Magn. Reson.
194
,
254
(
2008
).
18.
L.
Bogani
,
J. Appl. Phys.
109
,
07B115
(
2011
).
19.
E.
Heintze
,
F.
El Hallak
,
C.
Clauss
,
A.
Rettori
,
M. G.
Pini
,
F.
Totti
,
M.
Dressel
, and
L.
Bogani
,
Nature Mater.
12
,
202
(
2013
).
20.
P. L.
Gentili
,
L.
Bussotti
,
R.
Righini
,
A.
Beni
,
L.
Bogani
, and
A.
Dei
,
Chem. Phys.
314
,
9
(
2005
).
21.
C.
Song
,
T. W.
Heitmann
,
M. P.
DeFeo
,
K.
Yu
,
R.
McDermott
,
M.
Neeley
,
J. M.
Martinis
, and
B. L. T.
Plourde
,
Phys. Rev. B
79
,
174512
(
2009
).
22.
D.
Bothner
,
C.
Clauss
,
E.
Koroknay
,
M.
Kemmler
,
T.
Gaber
,
M.
Jetter
,
M.
Scheffler
,
P.
Michler
,
M.
Dressel
,
D.
Koelle
, and
R.
Kleiner
,
Appl. Phys. Lett.
100
,
012601
(
2012
).
23.
24.
E. O.
Schulz-DuBois
,
Bell Syst. Tech. J.
38
,
271
(
1959
).
25.
K.
Bernot
,
J.
Luzon
,
L.
Bogani
,
M.
Etienne
,
C.
Sangregorio
,
M.
Shanmugam
,
A.
Caneschi
,
R.
Sessoli
, and
D.
Gatteschi
,
J. Am. Chem. Soc.
131
,
5573
(
2009
).
26.
The experimental insert is designed for a film orientation parallel to the magnetic field. At this moment, we cannot quantify the misalignment of the field, but we estimate a tilting out of plane of less than 2°.
You do not currently have access to this content.