We report large enhancements in critical heat flux (CHF) on hierarchically structured surfaces, fabricated using electrophoretic deposition of silica nanoparticles on microstructured silicon and electroplated copper microstructures covered with copper oxide (CuO) nanostructures. A critical heat flux of ≈250 W/cm2 was achieved on a CuO hierarchical surface with a roughness factor of 13.3, and good agreement between the model proposed in our recent study and the current data was found. These results highlight the important role of roughness using structures at multiple length scales for CHF enhancement. This high heat removal capability promises an opportunity for high flux thermal management.

1.
D. C.
Price
,
IEEE Trans. Compon. Packag. Technol.
26
(
1
),
26
39
(
2003
).
2.
T. W.
Kenny
,
K. E.
Goodson
,
J. G.
Santiago
,
E. N.
Wang
,
J.-M.
Koo
,
L.
Jiang
,
E.
Pop
,
S.
Sinha
,
L.
Zhang
,
D.
Fogg
,
S.
Yao
,
R.
Flynn
,
C.-H.
Chang
, and
C. H.
Hidrovo
,
Int. J. High Speed Electron. Syst.
16
(
1
),
301
313
(
2006
).
3.
J. R.
Thome
,
Heat Transfer Eng.
27
(
9
),
1
3
(
2006
).
5.
J.
Mitrovic
,
Int. J. Therm. Sci.
45
,
1
15
(
2006
).
6.
R.
Chen
,
M.-C.
Lu
,
V.
Srinivasan
,
Z.
Wang
,
H. H.
Cho
, and
A.
Majumdar
,
Nano Lett.
9
(
2
),
548
553
(
2009
).
7.
S. G.
Kandlikar
,
J. Heat Transfer
123
,
1071
1079
(
2001
).
8.
E.
Forrest
,
E.
Williamson
,
J.
Buongiorno
,
L.-W.
Huc
,
M.
Rubner
, and
R.
Cohen
,
Int. J. Heat Mass Transfer
53
,
58
67
(
2010
).
9.
C. H.
Li
and
G. P.
Peterson
,
Front. Heat Mass Transfer (FHMT)
1
,
023007
(
2010
).
10.
S.
Kim
,
H. D.
Kim
,
H.
Kim
,
H. S.
Ahn
,
H.
Jo
,
J.
Kim
, and
M. H.
Kim
,
Exp. Therm. Fluid Sci.
34
(
4
),
487
495
(
2010
).
11.
H. S.
Ahn
,
H. J.
Jo
,
S. H.
Kang
, and
M. H.
Kim
,
Appl. Phys. Lett.
98
,
071908
(
2011
).
12.
K.-H.
Chu
,
R.
Enright
, and
E. N.
Wang
,
Appl. Phys. Lett.
100
(
24
),
241603
(
2012
).
13.
See supplementary material at http://dx.doi.org/10.1063/1.4801811 for the fabrication processes, surface roughness characterization, thermal resisitance calucation, and experimental setup.
14.
Y. S.
Joung
and
C. R.
Buie
,
Langmuir
27
(
7
),
4156
4163
(
2011
).
15.
Y.
Nam
,
S.
Sharratt
,
C.
Byon
,
S. J.
Kim
, and
Y. S.
Ju
,
J. Microelectromech. Syst.
19
(
3
),
581
588
(
2010
).
16.
T. G.
Theofanous
,
J. P.
Tu
,
A. T.
Dinh
, and
T. N.
Dinh
,
Exp. Therm. Fluid Sci.
26
(
6–7
),
775
792
(
2002
).
17.
M.-C.
Lu
,
R.
Chen
,
V.
Srinivasan
,
V. P.
Carey
, and
A.
Majumdar
,
Int. J. Heat Mass Transfer
54
(
25–26
),
5359
5367
(
2011
).
18.
V. P.
Carey
,
Liquid-Vapor Phase Change Phenomena
(
Taylor & Francis
,
Bristol
,
1992
).
19.
N.
Zuber
, AEC Report No. AECU-4439,
1959
.
20.
S. S.
Kutateladze
,
Kotloturbostroenie
3
,
10
12
(
1948
).
21.
W. M.
Rohsenow
,
J. P.
Hartnett
, and
E. N.
Ganic
,
Handbook of Heat Transfer Fundamentals
, 2nd ed. (
McGraw-Hill
,
New York
,
1985
).

Supplementary Material

You do not currently have access to this content.