Effect of Si doping on low-temperature grown GaCrN films has been investigated by positron annihilation spectroscopy. In undoped GaCrN films grown at , vacancy clusters with sizes of V6–V12 were found to be responsible for positron trapping. Such vacancy clusters were considerably suppressed in Si-doped GaCrN films grown at , although divacancies () still survived. The Si-doping may be one possible way to suppress vacancy aggregation during low temperature crystal growth, and the further methods to remove divacancies are required.
REFERENCES
1.
H.
Ohno
, Science
281
, 951
(1998
).2.
S. A.
Wolf
, D. D.
Awschalom
, R. A.
Buhrman
, J. M.
Daughton
, S.
von Molnár
, M. L.
Roukes
, A. Y.
Chtchelkanova
, and D. M.
Treger
, Science
294
, 1488
(2001
).3.
Ü.
Özgür
, Y. I.
Alivov
, C.
Liu
, A.
Teke
, M. A.
Reshchikov
, S.
Doğan
, V.
Avrutin
, S.-J.
Cho
, and H.
Morkoç
, J. Appl. Phys.
98
, 041301
(2005
).4.
C.
Liu
, F.
Yun
, and H.
Morkoç
, J. Mater. Sci.: Mater. Electron.
16
, 555
(2005
).5.
M.
Hashimoto
, Y.-K.
Zhou
, M.
Kanamura
, and H.
Asahi
, Solid State Commun.
122
, 37
(2002
).6.
Y.-K.
Zhou
, M.
Hashimoto
, M.
Kanamura
, and H.
Asahi
, J. Supercond. Novel Magn.
16
, 37
(2003
).7.
Y.-K.
Zhou
, P. H.
Fan
, S.
Emura
, S.
Hasegawa
, and H.
Asahi
, Phys. Status Solidi C
9
, 719
(2012
).8.
P.
Hautojärvi
, Positrons in Solids, Topics in Current Physics
(Springer
, 1979
).9.
R.
Krause-Rehberg
and H. S.
Leipner
, Positron Annihilation in Semiconductors, Solid-State Sciences
(Springer
, 1999
).10.
P. G.
Coleman
, Positron Beams and Their Applications
(World Scientific
, 2000
).11.
M. J.
Puska
and R. M.
Nieminen
, Rev. Mod. Phys.
66
, 841
(1994
).12.
P. E.
Blöhl
, Phys. Rev. B
50
, 17953
(1994
).13.
X.
Gonze
, J.-M.
Beuken
, R.
Caracas
, F.
Detraux
, M.
Fuchs
, G.-M.
Rignanese
, L.
Sindic
, M.
Verstraete
, G.
Zerah
, F.
Jollet
, M.
Torrent
, A.
Roy
, M.
Mikami
, P.
Ghosez
, J.-Y.
Raty
, and D. C.
Allan
, Comput. Mater. Sci.
25
, 478
(2002
).14.
N. A. W.
Holzwarth
, A. R.
Tackett
, and G. E.
Matthews
, Comput. Phys. Commun.
135
, 329
(2001
).15.
E.
Clementi
and C.
Roetti
, At. Data Nucl. Data Tables
14
, 177
(1974
).16.
E.
Borónski
and R. M.
Nieminen
, Phys. Rev. B
34
, 3820
(1986
).17.
A. P.
Mills
, Jr., Phys. Rev. Lett.
41
, 1828
(1978
).18.
P. J.
Schultz
and K. G.
Lynn
, Rev. Mod. Phys.
60
, 701
(1988
).19.
P.
Laukkanen
, S.
Lehkonen
, P.
Uusimaa
, M.
Pessa
, J.
Oila
, S.
Hautakangas
, K.
Saarinen
, J.
Likonen
, and J.
Keränen
, J. Appl. Phys.
92
, 786
(2002
).20.
I.
Halidou
, Z.
Benzarti
, Z.
Chine
, T.
Boufaden
, and B. E.
Jani
, Microelectron. J.
32
, 137
(2001
).21.
D. J.
Chadi
and K. J.
Chang
, Phys. Rev. B
38
, 1523
(1988
).22.
Z.
Tang
, M.
Hasegawa
, T.
Shimamura
, Y.
Nagai
, T.
Chiba
, Y.
Kawazoe
, M.
Takenaka
, E.
Kuramoto
, and T.
Iwata
, Phys. Rev. Lett.
82
, 2532
(1999
).23.
T. E. M.
Staab
, M.
Haugk
, A.
Sieck
, T.
Frauenheim
, and H. S.
Leipner
, Physica B
273–274
, 501
(1999
).24.
T. E. M.
Staab
, M.
Haugk
, T.
Frauenheim
, and H. S.
Leipner
, Phys. Rev. Lett.
83
, 5519
(1999
).25.
M.
Hashimoto
, Y. K.
Zhou
, M.
Kanamura
, H.
Katayama-Yoshida
, and H.
Asahi
, J. Cryst. Growth
251
, 327
(2003
).26.
D. J.
Chadi
, Appl. Phys. Lett.
71
, 2970
(1997
).27.
U.
Kaufmann
, M.
Kunzer
, H.
Obloh
, M.
Maier
, C.
Manz
, A.
Ramakrishnan
, and B.
Santic
, Phys. Rev. B
59
, 5561
(1999
).© 2013 American Institute of Physics.
2013
American Institute of Physics
You do not currently have access to this content.