Effect of Si doping on low-temperature grown GaCrN films has been investigated by positron annihilation spectroscopy. In undoped GaCrN films grown at 540°C, vacancy clusters with sizes of V6V12 were found to be responsible for positron trapping. Such vacancy clusters were considerably suppressed in Si-doped GaCrN films grown at 540°C, although divacancies (VGaVN) still survived. The Si-doping may be one possible way to suppress vacancy aggregation during low temperature crystal growth, and the further methods to remove divacancies are required.

2.
S. A.
Wolf
,
D. D.
Awschalom
,
R. A.
Buhrman
,
J. M.
Daughton
,
S.
von Molnár
,
M. L.
Roukes
,
A. Y.
Chtchelkanova
, and
D. M.
Treger
,
Science
294
,
1488
(
2001
).
3.
Ü.
Özgür
,
Y. I.
Alivov
,
C.
Liu
,
A.
Teke
,
M. A.
Reshchikov
,
S.
Doğan
,
V.
Avrutin
,
S.-J.
Cho
, and
H.
Morkoç
,
J. Appl. Phys.
98
,
041301
(
2005
).
4.
C.
Liu
,
F.
Yun
, and
H.
Morkoç
,
J. Mater. Sci.: Mater. Electron.
16
,
555
(
2005
).
5.
M.
Hashimoto
,
Y.-K.
Zhou
,
M.
Kanamura
, and
H.
Asahi
,
Solid State Commun.
122
,
37
(
2002
).
6.
Y.-K.
Zhou
,
M.
Hashimoto
,
M.
Kanamura
, and
H.
Asahi
,
J. Supercond. Novel Magn.
16
,
37
(
2003
).
7.
Y.-K.
Zhou
,
P. H.
Fan
,
S.
Emura
,
S.
Hasegawa
, and
H.
Asahi
,
Phys. Status Solidi C
9
,
719
(
2012
).
8.
P.
Hautojärvi
,
Positrons in Solids, Topics in Current Physics
(
Springer
,
1979
).
9.
R.
Krause-Rehberg
and
H. S.
Leipner
,
Positron Annihilation in Semiconductors, Solid-State Sciences
(
Springer
,
1999
).
10.
P. G.
Coleman
,
Positron Beams and Their Applications
(
World Scientific
,
2000
).
11.
M. J.
Puska
and
R. M.
Nieminen
,
Rev. Mod. Phys.
66
,
841
(
1994
).
12.
P. E.
Blöhl
,
Phys. Rev. B
50
,
17953
(
1994
).
13.
X.
Gonze
,
J.-M.
Beuken
,
R.
Caracas
,
F.
Detraux
,
M.
Fuchs
,
G.-M.
Rignanese
,
L.
Sindic
,
M.
Verstraete
,
G.
Zerah
,
F.
Jollet
,
M.
Torrent
,
A.
Roy
,
M.
Mikami
,
P.
Ghosez
,
J.-Y.
Raty
, and
D. C.
Allan
,
Comput. Mater. Sci.
25
,
478
(
2002
).
14.
N. A. W.
Holzwarth
,
A. R.
Tackett
, and
G. E.
Matthews
,
Comput. Phys. Commun.
135
,
329
(
2001
).
15.
E.
Clementi
and
C.
Roetti
,
At. Data Nucl. Data Tables
14
,
177
(
1974
).
16.
E.
Borónski
and
R. M.
Nieminen
,
Phys. Rev. B
34
,
3820
(
1986
).
17.
A. P.
Mills
, Jr.
,
Phys. Rev. Lett.
41
,
1828
(
1978
).
18.
P. J.
Schultz
and
K. G.
Lynn
,
Rev. Mod. Phys.
60
,
701
(
1988
).
19.
P.
Laukkanen
,
S.
Lehkonen
,
P.
Uusimaa
,
M.
Pessa
,
J.
Oila
,
S.
Hautakangas
,
K.
Saarinen
,
J.
Likonen
, and
J.
Keränen
,
J. Appl. Phys.
92
,
786
(
2002
).
20.
I.
Halidou
,
Z.
Benzarti
,
Z.
Chine
,
T.
Boufaden
, and
B. E.
Jani
,
Microelectron. J.
32
,
137
(
2001
).
21.
D. J.
Chadi
and
K. J.
Chang
,
Phys. Rev. B
38
,
1523
(
1988
).
22.
Z.
Tang
,
M.
Hasegawa
,
T.
Shimamura
,
Y.
Nagai
,
T.
Chiba
,
Y.
Kawazoe
,
M.
Takenaka
,
E.
Kuramoto
, and
T.
Iwata
,
Phys. Rev. Lett.
82
,
2532
(
1999
).
23.
T. E. M.
Staab
,
M.
Haugk
,
A.
Sieck
,
T.
Frauenheim
, and
H. S.
Leipner
,
Physica B
273–274
,
501
(
1999
).
24.
T. E. M.
Staab
,
M.
Haugk
,
T.
Frauenheim
, and
H. S.
Leipner
,
Phys. Rev. Lett.
83
,
5519
(
1999
).
25.
M.
Hashimoto
,
Y. K.
Zhou
,
M.
Kanamura
,
H.
Katayama-Yoshida
, and
H.
Asahi
,
J. Cryst. Growth
251
,
327
(
2003
).
26.
D. J.
Chadi
,
Appl. Phys. Lett.
71
,
2970
(
1997
).
27.
U.
Kaufmann
,
M.
Kunzer
,
H.
Obloh
,
M.
Maier
,
C.
Manz
,
A.
Ramakrishnan
, and
B.
Santic
,
Phys. Rev. B
59
,
5561
(
1999
).
You do not currently have access to this content.