The grain structure in Cu interconnects of the 45 nm node was analyzed to yield grain orientation and boundary characteristics using a high-resolution electron diffraction technique. A dominant sidewall growth of {111} grains was observed, reflecting the importance of interfacial energy in controlling grain growth below 70 nm linewidth. The grain structure was used to identify flux divergent sites for void formation under electromigration (EM) and to analyze the effect on EM statistics for Cu lines with CoWP capping using a microstructure-based model. This analysis established a correlation between the microstructure of Cu nanolines, void formation kinetics, and EM statistics.

1.
K. N.
Tu
,
J. Appl. Phys.
94
,
5451
(
2003
).
2.
C. K.
Hu
,
L.
Gignac
, and
R.
Rosenberg
,
Microelectron. Reliab.
46
,
213
(
2006
).
3.
J.
Gambino
,
J.
Wynne
,
J.
Gill
,
S.
Mongeon
,
D.
Meatyard
,
B.
Lee
,
H.
Bamnolker
,
L.
Hall
,
N.
Li
, and
M.
Hernandez
,
Microelectron. Eng.
83
,
2059
(
2006
).
4.
C. K.
Hu
,
L. M.
Gignac
,
E.
Liniger
,
E.
Huang
,
S.
Greco
,
P.
McLaughlin
,
C. C.
Yang
, and
J. J.
Demares
, in
Proceedings of 10th International Workshop on Stress-Induced Phenomena in Metallization
, edited by
P. S.
Ho
,
E.
Zschech
, and
S.
Ogawa
, Austin, Texas (
AIP
,
New York
,
2009
), pp.
3
11
.
5.
L.
Zhang
,
J. P.
Zhou
,
J.
Im
,
P. S.
Ho
,
O.
Aubel
,
C.
Hennesthal
, and
E.
Zschech
, in
Proceedings of the 48th IEEE International Reliability Physics Symposium, Anaheim, CA
(
IEEE
,
Piscataway, NJ
,
2010
), pp.
581
585
.
6.
C. K.
Hu
,
R.
Hübner
,
L.
Zhang
,
M.
Hauschildt
, and
P. S.
Ho
,
in Advanced Interconnects for ULSI Technology
, edited by
M. R.
Baklanov
,
P. S.
Ho
, and
E.
Zschech
(
John Wiley & Sons, Ltd.
,
Chichester, UK
,
2012
), Chap. 9, p.
292
.
7.
K. J.
Ganesh
,
M.
Kawasaki
,
J. P.
Zhou
, and
P. J.
Ferreira
,
Microsc. Microanal.
16
,
614
(
2010
).
8.
E. F.
Rauch
and
L.
Dupuy
,
Arch. Metall. Mater.
50
,
87
(
2005
).
9.
K. J.
Ganesh
,
A. D.
Darbal
,
S.
Rajasekhara
,
G. S.
Rohrer
,
K.
Barmak
, and
P. J.
Ferreira
,
Nanotechnology
23
,
135702
(
2012
).
10.
P. R.
Besser
,
E.
Zschech
,
W.
Blum
,
D.
Winter
,
R.
Ortega
,
S.
Rose
,
M.
Herrick
,
M.
Gall
,
S.
Thrasher
,
M.
Tiner
,
B.
Baker
,
G.
Braeckelmann
,
L.
Zhao
,
C.
Simpson
,
C.
Capasso
,
H.
Kawasaki
, and
E.
Weitzman
,
J. Electron. Mater.
30
,
320
(
2001
).
11.
H.
Tsuchiya
and
S.
Yokogawa
,
Microelectron. Reliab.
46
,
1415
(
2006
).
12.
L.
Zhang
,
L.
Cao
, and
P. S.
Ho
, in
Proceedings of the 14th IEEE International Interconnect Technology Conference and Materials for Advanced Metallization, Dresden, Germany
(IEEE, Piscataway, NJ, 2011), p.
P2
61
.
13.
E.
Zschech
,
P. S.
Ho
,
D.
Schmeisser
,
M. A.
Meyer
,
A. V.
Vairagar
,
G.
Schneider
,
M.
Hauschildt
,
M.
Kraatz
, and
V.
Sukharev
,
IEEE Trans. Device Mater. Reliab.
9
,
20
(
2009
).
14.
V.
Sukharev
,
A.
Kteyan
,
E.
Zschech
, and
W. D.
Nix
,
IEEE Trans. Device Mater. Reliab.
9
,
87
(
2009
).
15.
Z.-S.
Choi
,
R.
Mönig
, and
C. V.
Thompson
,
Appl. Phys. Lett.
90
,
241913
(
2007
).
16.
C. K.
Hu
,
L.
Gignac
, and
R.
Rosenberg
, in
Diffusion Processes in Advanced Technological Materials
, edited by
D.
Gupta
(
William Andrew Publishing
,
Norwich
,
New York
,
2005
), Chap. 9, p.
427
.
17.
W. R.
Fayad
,
V. K.
Andleigh
, and
C. V.
Thompson
,
J. Mater. Res.
16
,
413
(
2001
).
18.
D. B.
Butrymowicz
,
J. R.
Manning
, and
M. E.
Read
,
J. Phys. Chem. Ref. Data
2
,
643
(
1973
).
19.
G. A.
Sullivan
,
J. Phys. Chem. Solids
28
,
347
(
1967
).
20.
C.
Christiansen
,
B.
Li
,
M.
Angyal
,
T.
Kane
,
V.
McGahay
,
Y. Y.
Wang
, and
S.
Yao
, in
Proceedings of the 49th IEEE International Reliability Physics Symposium, Monterey, CA
(IEEE, Piscataway, NJ,
2011
), pp.
312
316
.
21.
A. S.
Oates
and
M. H.
Lin
, in
Proceedings of the 50th IEEE International Reliability Physics Symposium, Anaheim, CA
(
IEEE
,
Piscataway, NJ
,
2012
), pp.
6B
2
1
6B
2
7
.
You do not currently have access to this content.