Unveiling the full potential of doped silicon for electronic, photonic, and plasmonic application at THz frequencies requires a thorough understanding of its high-frequency transport properties. In this letter, we present a comprehensive numerical characterization of the frequency-dependent (0–2.5 THz) complex conductivity of silicon at room temperature over a wide range of doping densities (10141018cm3). The conductivity was calculated using a multiphysics computational technique that self-consistently couples ensemble Monte Carlo (EMC) simulation of carrier transport, the finite-difference time-domain (FDTD) solution to Maxwell's equations, and molecular dynamics (MD) for the treatment of short-range Coulomb interactions. Our EMC/FDTD/MD numerical results complement the experimental data that only exist for a select few doping densities. Moreover, we show that the computed complex conductivity of Si at THz frequencies can be accurately described by a generalized Drude (GD) model with doping-dependent parameters that capture the cross-over from phonon-dominated to Coulomb-dominated electron transport as the doping density increases. The simplicity of the GD model enables one to readily compute the complex conductivity of silicon for any doping density within the range studied here.

1.
V. R.
Almeida
,
C. A.
Barrios
,
R. R.
Panepucci
, and
M.
Lipson
,
Nature (London)
431
,
1081
(
2004
).
2.
J. A.
Dionne
,
K.
Diest
,
L. A.
Sweatlock
, and
H. A.
Atwater
,
Nano Lett.
9
,
897
(
2009
).
3.
M. T.
Hill
,
Nat. Photonics
5
,
130
(
2011
).
4.
I. D.
Rukhlenko
,
M.
Premaratne
, and
G. P.
Agrawal
,
Opt. Express
19
,
206
(
2011
).
5.
J. H.
Liu
,
C. L.
Chen
,
H. T.
Lue
, and
J. T.
Lue
,
Meas. Sci. Technol.
13
,
2032
(
2002
).
6.
Q.
Xu
,
B.
Schmidt
,
S.
Pradhan
, and
M.
Lipson
,
Nature (London)
435
,
325
(
2005
).
7.
H.-C.
Yuan
and
Z.
Ma
,
Appl. Phys. Lett.
89
,
212105
(
2006
).
8.
W.
Zhou
,
Z.
Ma
,
H.
Yang
,
Z.
Qiang
,
G.
Qin
,
H.
Pang
,
L.
Chen
,
W.
Yang
,
S.
Chuwongin
, and
D.
Zhao
,
J. Phys. D: Appl. Phys.
42
,
234007
(
2009
).
9.
D.
Grischkowsky
,
S.
Keiding
,
M.
van Exter
, and
C.
Fattinger
,
J. Opt. Soc. Am. B Opt. Phys.
7
,
2006
(
1990
).
10.
B.
Ferguson
and
X.
Zhang
,
Nature Mater.
1
,
26
(
2002
).
11.
D. M.
Mittleman
,
S.
Hunsche
,
L.
Boivin
, and
M. C.
Nuss
,
Opt. Lett.
22
,
904
(
1997
).
12.
M.
Nagel
,
P. H.
Bolivar
,
M.
Brucherseifer
, and
H.
Kurz
,
Appl. Phys. Lett.
80
,
154
(
2002
).
13.
R. M.
Woodward
,
V. P.
Wallace
,
R. J.
Pye
,
B. E.
Cole
,
D. D.
Arnone
,
E. H.
Linfield
, and
M.
Pepper
,
J. Investig. Dermatol.
120
,
72
(
2003
).
14.
J.
Nishizawa
,
T.
Sasaki
, and
T.
Tanno
,
J. Phys. Chem. Solids
69
,
693
(
2008
).
15.
A.
Dobroiu
,
M.
Yamashita
,
Y. N.
Ohshima
,
Y.
Moritam
,
C.
Otani
, and
K.
Kawase
,
Appl. Opt.
43
,
5637
(
2004
).
16.
D.
van der Weide
,
Opt. Photonics News
14
,
48
(
2003
).
17.
P. H.
Siegel
,
IEEE Trans. Microwave Theory Tech.
50
,
910
(
2002
).
18.
M. C.
Hoffmann
and
J. A.
Fülöp
,
J. Phys. D: Appl. Phys.
44
,
083001
(
2011
).
19.
M.
van Exter
and
D.
Grischkowsky
,
Phys. Rev. B
41
,
12140
(
1990
).
20.
T. I.
Jeon
and
D.
Grischkowsky
,
Phys. Rev. Lett.
78
,
1106
(
1997
).
21.
K. J.
Willis
,
J.
Ayubi-Moak
,
S. C.
Hagness
, and
I.
Knezevic
,
J. Comput. Electron.
8
,
153
(
2009
).
22.
J.
Lloyd-Hughes
and
T.-I.
Jeon
,
J.
Infrared
,
Millim. Terahertz Waves
33
,
871
(
2012
).
23.
M. A.
Alsunaidi
,
S. M.
Imtiaz
, and
S.
El-Ghazaly
,
IEEE Trans. Microwave Theory Tech.
44
,
799
(
1996
).
24.
R. O.
Grondin
,
S.
El-Ghazaly
, and
S. M.
Goodnick
,
IEEE Trans. Microwave Theory Tech.
47
,
817
(
1999
).
25.
K. J.
Willis
,
S. C.
Hagness
, and
I.
Knezevic
,
Appl. Phys. Lett.
96
,
062106
(
2010
).
26.
K. J.
Willis
,
S. C.
Hagness
, and
I.
Knezevic
,
J. Appl. Phys.
110
,
063714
(
2011
).
27.
C.
Jacoboni
and
L.
Reggiani
,
Rev. Mod. Phys.
55
,
645
(
1983
).
28.
M.
Lundstrom
,
Fundamentals of Carrier Transport
, 2nd ed. (
Cambridge University Press
,
2000
).
29.
B. K.
Ridley
,
Quantum Processes in Semiconductors
, 4th ed. (
Oxford Science Publications
,
1999
).
30.
H. I.
Ralph
,
G.
Simpson
, and
R. J.
Elliott
,
Phys. Rev. B
11
,
2948
(
1975
).
31.
D.
Chattopadhyay
and
H. J.
Queisser
,
Rev. Mod. Phys.
53
,
745
(
1981
).
32.
D. K.
Ferry
,
A. M.
Kriman
, and
M. J.
Kann
,
Comput. Phys. Commun.
67
,
119
(
1991
).
33.
A. M.
Kriman
,
M. J.
Kann
,
D. K.
Ferry
, and
R.
Joshi
,
Phys. Rev. Lett.
65
,
1619
(
1990
).
34.
A. M.
Kriman
,
R. P.
Joshi
,
M. J.
Kann
, and
D. K.
Ferry
,
Semicond. Sci. Technol.
7
,
B243
(
1992
).
35.
R. P.
Joshi
,
A. M.
Kriman
,
M. J.
Kann
, and
D. K.
Ferry
,
Appl. Phys. Lett.
58
,
2369
(
1991
).
36.
R.
Hull
,
Properties of Crystalline Silicon
(
IET
,
1999
).
37.
P.
Gori-Giorgi
,
F.
Sacchetti
, and
G. B.
Bachelet
,
Phys. Rev. B
61
,
7353
(
2000
).
38.
J.-J.
Liang
,
R.
Cygan
, and
T.
Alam
,
J. Non-Cryst. Solids
263–264
,
167
(
2000
).
39.
A.
Taflove
and
S. C.
Hagness
,
Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed
. (
Artech House
,
2005
).
40.
K. W.
Wagner
,
Ann. Phys.
40
,
817
(
1913
);
K. W.
Wagner
, [
Ann. Phys.
345
,
817
(
2006
) (in German)].
41.
W. A.
Yager
,
J. Appl. Phys.
7
,
434
(
1936
).
42.
R. M.
Hill
and
L. A.
Dissado
,
J. Phys. C
18
,
3829
(
1985
).
43.
M. C.
Beard
,
G. M.
Turner
, and
C. A.
Schmuttanmaer
,
Phys. Rev. B
62
,
15764
(
2000
).
44.

τσ(0)=σ(0)m*/n0q2, where m*=0.26m0 is the conductivity effective mass of electrons in silicon, m0 is the free-electron mass, and q is the elementary charge.

You do not currently have access to this content.