The chemistry of the precursor from which charge transport layers are formed can significantly affect the device performance of organic solar cells. Here, we compare two common precursors that are used to generate titania electron transport layers and elucidate their effects on the transient characteristics of inverted bulk-heterojunction polymer solar cells comprising poly(3-hexyl hiophene) and [6,6]-phenyl-C61-butyric acid methyl ester. Substituting the isopropyl ligands of titanium isopropoxide with 2-methoxyethanol leads to electron transport layers that require a shorter illumination time to fill shallow electron traps. Furthermore, organic solar cells with titania electron transport layers prepared with such pre-modified titania precursor exhibit higher power-conversion efficiencies stemming from lower trap densities.

1.
N.
Choudhury
, “
UCLA researchers reach 10.6% efficiency for tandem polymer solar cells
,” PV-Tech, February 16, 2012 (accessed October 4,
2012
), see http://www.pv-tech.org/news/ucla_researchers_reach_10.6_efficiency_for_tandem_polymer_solar_cells.
2.
L.
Dou
,
J.
You
,
J.
Yang
,
C.-C.
Chen
,
Y.
He
,
S.
Murase
,
T.
Moriarty
,
K.
Emery
,
G.
Li
, and
Y.
Yang
,
Nat. Photonics
6
,
180
(
2012
).
3.
Y.
Liang
,
Z.
Xu
,
J.
Xia
,
S.-T.
Tsai
,
Y.
Wu
,
G.
Li
,
C.
Ray
, and
L.
Yu
,
Adv. Mater
22
,
E135
(
2010
).
4.
5.
C. W.
Tang
,
Appl. Phys. Lett.
48
,
183
(
1986
).
6.
G.
Yu
,
J.
Gao
,
J. C.
Hummelen
,
F.
Wudl
, and
A. J.
Heeger
,
Science
270
,
1789
(
1995
).
7.
C. J.
Brabec
and
J. R.
Durrant
,
MRS Bull.
33
,
670
(
2008
).
8.
V.
Shrotriya
,
G.
Li
,
Y.
Yao
,
C.-W.
Chu
, and
Y.
Yang
,
Appl. Phys. Lett.
88
,
073508
(
2006
).
9.
J. Y.
Kim
,
S. H.
Kim
,
H. H.
Lee
,
K.
Lee
,
W.
Ma
,
X.
Gong
, and
A. J.
Heeger
,
Adv. Mater
18
,
572
(
2006
).
10.
M. M.
Mandoc
,
F. B.
Kooistra
,
J. C.
Hummelen
,
B.
d. Boer
, and
P. W. M.
Blom
,
Appl. Phys. Lett.
91
,
263505
(
2007
).
11.
P. P.
Boix
,
G.
Garcia-Belmonte
,
U.
Munecas
,
M.
Neophytou
,
C.
Waldauf
, and
R.
Pacios
,
Appl. Phys. Lett.
95
,
233302
(
2009
).
12.
A.
Bezryadina
,
C.
France
,
R.
Graham
,
L.
Yang
,
S. A.
Carter
, and
G. B.
Alers
,
Appl. Phys. Lett.
100
,
013508
(
2012
).
13.
C. S.
Kim
,
S. S.
Lee
,
E. D.
Gomez
,
J. B.
Kim
, and
Y.-L.
Loo
,
Appl. Phys. Lett.
94
,
113302
(
2009
).
14.
S. J.
Yoon
,
J. H.
Park
,
H. K.
Lee
, and
O. O.
Park
,
Appl. Phys. Lett.
92
,
143504
(
2008
).
15.
C. S.
Kim
,
L. L.
Tinker
,
B. F.
DiSalle
,
E. D.
Gomez
,
S.
Lee
,
S.
Bernhard
, and
Y.-L.
Loo
,
Adv. Mater
21
,
3110
(
2009
).
16.
K.
Lee
,
J. Y.
Kim
,
S. H.
Park
,
S. H.
Kim
,
S.
Cho
, and
A. J.
Heeger
,
Adv. Mater
19
,
2445
(
2007
).
17.
S. H.
Park
,
A.
Roy
,
S.
Beaupre
,
S.
Cho
,
N.
Coates
,
J. S.
Moon
,
D.
Moses
,
M.
Leclerc
,
K.
Lee
, and
A. J.
Heeger
,
Nat. Photonics
3
,
297
(
2009
).
18.
J. A.
Felix
,
D. M.
Fleetwood
,
R. D.
Schrimpf
,
J. G.
Hong
,
G.
Lucovsky
,
J. R.
Schwank
, and
M. R.
Shaneyfelt
,
IEEE Trans. Nucl. Sci.
49
,
3191
(
2002
).
19.
K.
Woo
,
C. J.
Choi
,
S. J.
Sim
,
Y. S.
Cho
, and
Y. D.
Kim
,
J. Mater. Sci.
35
,
4539
(
2000
).
20.
V.
Barlier
,
V.
Bounor-Legaré
,
G.
Boiteux
,
D.
Léonard
, and
J.
Davenas
,
Mater. Chem. Phys.
115
,
429
(
2009
).
21.
L. H.
Slooff
,
J. M.
Kroon
,
J.
Loos
,
M. M.
Koetse
, and
J.
Sweelssen
,
Adv. Funct. Mater.
15
,
689
(
2005
).
You do not currently have access to this content.