Variable angle spectroscopic ellipsometry and sum-frequency vibrational spectroscopy have been used to study molecular orientations in thin films used in an organic light-emitting-diode. The films consist of sterically bulky and cross-shaped molecules that have small anisotropy in shape, 2-methyl-9,10-di(2-naphthyl)anthracene (MADN). As a result, anisotropic molecular orientation in the amorphous films has been observed with respect to the surface normal. The short axis of anthracene in MADN molecules, more or less, slightly tilts from the surface plane but preferentially close to the surface with a certain orientational distribution, while the long axis of anthracene is, on average, oriented close to the magic angle from the surface normal. This anisotropic molecular orientation gives rise to better carrier transportation properties than the isotropic orientation.

1.
C. W.
Tang
and
S. A.
VanSlyke
,
Appl. Phys. Lett.
51
,
913
(
1987
).
2.
H.-W.
Lin
,
C.-L.
Lin
,
H.-H.
Chang
,
Y.-T.
Lin
,
C.-C.
Wu
,
Y.-M.
Chen
,
R.-T.
Chen
,
Y.-Y.
Chien
, and
K.-T.
Wang
,
J. Appl. Phys.
95
,
881
(
2004
).
3.
D.
Yokoyama
,
A.
Sakaguchi
,
M.
Suzuki
, and
C.
Adachi
,
Appl. Phys. Lett.
93
,
173302
(
2008
).
4.
D.
Yokoyama
,
A.
Sakaguchi
,
M.
Suzuki
, and
C.
Adachi
,
Org. Electron.
10
,
127
(
2009
).
5.
D.
Yokoyama
,
Y.
Setoguchi
,
A.
Sakaguchi
,
M.
Suzuki
, and
C.
Adachi
,
Adv. Funct. Marer.
20
,
386
(
2010
).
6.
D.
Yokoyama
,
H.
Sasabe
,
Y.
Furukawa
,
C.
Adachi
, and
J.
Kido
,
Adv. Funct. Marer.
21
,
1375
(
2011
).
7.
M.-H.
Ho
,
M.-Y.
Liu
,
K.-H.
Lin
,
C. H.
Chen
, and
C. W.
Tang
,
SID Int. Symp. Digest Tech. Papers
41
,
552
(
2010
).
8.
D.
Yokoyama
,
Y.
Park
,
B.
Kim
,
S.
Kim
,
Y.-J.
Pu
,
J.
Kido
, and
J.
Park
,
Appl. Phys. Lett.
99
,
123303
(
2011
).
9.
H.
Fujiwara
,
Spectroscopic Ellipsometry: Principles and Applications
(
Wiley
,
New York
,
2007
).
10.
J. A.
Woollam
,
B.
Johs
,
C. M.
Herzinger
,
J.
Hilfiker
,
R.
Synowicki
, and
C. L.
Bungay
,
Proc. SPIE
CR72
,
3
(
1999
).
11.
Y. R.
Shen
,
The Principles of Nonlinear Optics
(
Wiley
,
New York
,
1984
).
12.
X.
Zhuang
,
P. B.
Miranda
,
D.
Kim
, and
Y. R.
Shen
,
Phys. Rev. B
59
,
12632
(
1999
).
13.
X.
Wei
,
X.
Zhuang
,
S.-C.
Hong
,
T.
Goto
, and
Y. R.
Shen
,
Phys. Rev. Lett.
82
,
4256
(
1999
).
14.
M.
Oh-e
,
S.-C.
Hong
, and
Y. R.
Shen
,
J. Phys. Chem. B
104
,
7455
(
2000
).
15.
M.
Oh-e
,
EKISHO
15
(
3
),
245
91
(
2011
);
M.
Oh-e
,
EKISHO
15
(
4
),
327
59
(
2011
).
16.
M.
Pfeiffer
,
K.
Leo
, and
N.
Karl
,
J. Appl. Phys.
80
,
6880
(
1996
).
17.
E.
Ito
,
Y.
Washizu
,
N.
Hayashi
,
H.
Ishii
,
N.
Matsuie
,
K.
Tsuboi
, and
Y.
Ouchi
,
J. Appl. Phys.
92
,
7306
(
2002
).
18.
R.
Superfine
,
J. Y.
Huang
, and
Y. R.
Shen
,
Phys. Rev. Lett.
66
,
1066
(
1991
).
19.
C. D.
Stanners
,
Q.
Du
,
R. P.
Chin
,
P.
Cremer
,
G. A.
Somorjai
, and
Y. R.
Shen
,
Chem. Phys. Lett.
232
,
407
(
1995
).
20.
T.
Ishiyama
,
V. V.
Sokolov
, and
A.
Morita
,
J. Chem. Phys.
134
,
024510
(
2011
).
21.
T.-Y.
Chu
and
O.-K.
Song
,
Appl. Phys. Lett.
90
,
203512
(
2007
).
22.
M. A.
Khan
,
W.
Xu
,
K.-u.
Haq
,
Y.
Bai
,
X. Y.
Jiang
,
Z. L.
Zhang
, and
W. Q.
Zhu
,
J. Appl. Phys.
103
,
014509
(
2008
).
You do not currently have access to this content.