We demonstrate through simulations and experiments that a perforated metallic film, with subwavelength perforation dimensions and spacing, deposited on a substrate with a sufficiently large dielectric constant, can develop a broad-band frequency window where the transmittance of light into the substrate becomes essentially equal to that in the film absence. We show that the location of this broad-band extraordinary optical transmission window can be engineered in a wide frequency range (from IR to UV), by varying the geometry and the material of the perforated film as well as the dielectric constant of the substrate. This effect could be useful in the development of transparent conducting electrodes for various photonic and photovoltaic devices.

1.
T. W.
Ebbesen
,
H. J.
Leek
,
H. F.
Ghaemi
,
T.
Thio
, and
P. A.
Wolff
,
Nature
391
,
667
669
(
1998
).
2.
H. J.
Lezec
,
A.
Degiron
,
E.
Devaux
,
R. A.
Linke
,
L.
Martin-Moreno
,
F. J.
Garcia-Vidal
, and
T. W.
Ebbesen
,
Science
297
,
820
822
(
2002
).
3.
L.
Martin-Moreno
,
F. J.
Garcia-Vidal
,
H. J.
Lezec
,
K. M
Pellerin
,
T.
Thio
,
J. B.
Pendry
, and
T. W.
Ebbesen
,
Phys. Rev. Lett.
86
,
1114
1117
(
2001
).
4.
K. J.
Klein Koerkamp
,
S.
Enoch
,
F. B.
Segerink
,
N. F.
van Hulst
, and
L.
Kuipers
,
Phys. Rev. Lett.
92
,
183901
(
2004
).
5.
H.
Liu
and
P.
Lalanne
,
Nature
452
,
728
731
(
2008
).
6.
H.
Bethe
,
Phys. Rev.
66
,
163
182
(
1944
).
7.
W.-C.
Chen
,
N. I.
Landy
,
K.
Kempa
, and
W. J.
Padilla
, “
A subwavelength extraordinary-optical-transmission channel in Babinet metamaterials
,”
Adv. Opt. Mat.
(published online).
8.
J. B.
Pendry
,
L.
Martn-Moreno
, and
F. J.
Garcia-Vidal
,
Science
305
,
847
848
(
2004
).
9.
F. J.
Garcia-Vidal
,
L.
Martn-Moreno
, and
J. B.
Pendry
,
J. Opt. A: Pure Appl. Opt.
7
,
S97
S101
(
2005
).
10.
K.
Kempa
,
Phys. Status Solidi (RRL)
4
,
218
220
(
2010
).
11.
Y.
Peng
,
T.
Paudel
,
W.
Chen
,
W. J.
Padilla
,
Z. F.
Ren
, and
K.
Kempa
,
Appl. Phys. Lett.
97
,
041901
(
2010
).
12.
Y.
Wang
,
E. W.
Plummer
, and
K.
Kempa
,
Adv. Phys.
60
,
799
898
(
2011
).
13.
J. D.
Jackson
,
Classical Electrodynamics
, 3rd ed. (
Wiley
,
New York
,
1998
).
14.
J. A.
Kong
,
Electromagnetic Wave Theory
(
EMW
,
Cambridge, MA
,
2005
).
15.
O. S.
Heavens
,
Optical Properties of Thin Solid Films
(
Dover
,
New York
,
1965
).
16.
17.
A.
Kosiorek
,
W.
Kandulski
,
P.
Chudzinski
,
K.
Kempa
, and
M.
Giersig
,
Nano Lett.
4
,
1359
(
2004
).
18.
G.
Ctistis
,
P.
Patoka
,
X.
Wang
,
K.
Kempa
, and
M.
Giersig
,
Nano Lett.
7
,
2926
2930
(
2007
).
19.
A.
Taflove
and
S. C.
Hagness
,
Computational Electrodynamics: The Finite-Difference Time-Domain Method
(
Artech
,
Norwood, MA
,
1995
).
20.
MIT Electromagnetic Equation Propagation, Massachusetts Institute of Technology (http://ab-initio.mit.edu/wiki/index.php/Meep)
21.
CST Microwave Studio, the Computer Simulation Technology AG (http://www.cst.com/Content/Products/MWS/Overview.aspx)
22.
D.
Palik
,
Handbook of Optical Constants of Solids
(
Academic
,
Boston
,
1985
).
23.
P. B.
Johnson
and
R. W.
Christy
,
Phys. Rev. B
6
,
4370
(
1972
).
24.
S. H.
Lee
,
K. C.
Bantz
,
N. C.
Lindquist
,
S.
Oh
, and
C. L.
Haynes
,
Langmuir
25
(
23
),
13685
13693
(
2009
).
25.
J.
Zhu
,
X.
Zhu
,
R.
Hoekstra
,
L.
Li
,
F.
Xiu
,
M.
Xue
,
B.
Zeng
, and
K. L.
Wang
,
Appl. Phys. Lett.
100
,
143109
(
2012
).
You do not currently have access to this content.