Hybrid organic-inorganic photovoltaic devices based on nanostructured silicon and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hybrid devices present excellent light harvesting capabilities as well as a simple fabrication process. Unlike the metal/Si junction, PEDOT:PSS solution can be solution-casted onto the silicon surface structure to build up hybrid photovoltaic devices without using vacuum deposition techniques. Detailed electronic characterization at PEDOT:PSS/Si heterojunctions is indispensable for achieving a high-performance device. In this paper, the electronic properties of current-voltage, capacitance-voltage, and internal quantum efficiency are characterized in order to explore the organic-inorganic heterojunctions properties. The interfacial defect state density (Dit) of hybrid organic-inorganic photovoltaic devices as well as majority carrier charge transfer velocity (vn) has been extracted from the electrical measurement results. It has been found that less Dit and lower vn can lead to improved electric output characteristics of the organic-inorganic heterojunctions photovoltaic devices, which is ascribed to suppressed charge recombination at the organic-inorganic interface.

1.
J.
Zhao
,
A.
Wang
,
M. A.
Green
, and
F.
Ferrazza
,
Appl. Phys. Lett.
73
,
1991
(
1998
).
2.
T.
Mishima
,
M.
Taguchi
,
H.
Sakata
, and
E.
Maruyama
,
Sol. Energy Mater. Sol. Cells
95
,
18
(
2011
).
3.
N.
Jensen
,
R. M.
Hausner
,
R. B.
Bergmann
,
J. H.
Werner
, and
U.
Rau
,
Prog. Photovoltaics
10
,
1
(
2002
).
4.
N.
Jensen
,
U.
Rau
,
R. M.
Hausner
,
S.
Uppal
,
L.
Oberbeck
,
R. B.
Bergmann
, and
J. H.
Werner
,
J. Appl. Phys.
87
,
2639
(
2000
).
5.
G.
Garcia-Belmonte
,
J.
García-Cañadas
,
I.
Mora-Seró
,
J.
Bisquert
,
C.
Voz
,
J.
Puigdollers
, and
R.
Alcubilla
,
Thin Solid Films.
514
,
254
(
2006
).
6.
D. R.
Kim
,
C. H.
Lee
,
P. M.
Rao
,
I. S.
Cho
, and
X.
Zheng
,
Nano Lett.
11
,
2704
(
2011
).
7.
M.
Garin
,
U.
Rau
,
W.
Brendle
,
I.
Martin
, and
R.
Alcubilla
,
J. Appl. Phys.
98
,
093711
(
2005
).
8.
M. J.
Sailor
,
E. J.
Ginsburg
,
C. B.
Gorman
,
A.
Kumar
,
R. H.
Grubbs
, and
N. S.
Lewis
,
Science.
249
,
1146
(
1990
).
9.
F.
Zhang
,
B.
Sun
,
T.
Song
,
X.
Zhu
, and
S.
Lee
,
Chem. Mater.
23
,
2084
(
2011
).
10.
X.
Shen
,
B.
Sun
,
D.
Liu
, and
S.-T.
Lee
,
J. Am. Chem. Soc.
133
,
19408
(
2011
).
11.
F.
Zhang
,
T.
Song
, and
B.
Sun
,
Nanotechnology
23
,
194006
(
2012
).
12.
L.
He
,
C.
Jiang
,
H.
Wang
,
D.
Lai
,
Y. H.
Tan
,
C. S.
Tan
, and
Rusli
,
Appl. Phys. Lett.
100
,
103104
(
2012
).
13.
Q.
Liu
,
M.
Ono
,
Z.
Tang
,
R.
Ishikawa
,
K.
Ueno
, and
H.
Shirai
,
Appl. Phys. Lett.
100
,
183901
(
2012
).
14.
S.
Jeong
,
E. C.
Garnett
,
S.
Wang
,
Z.
Yu
,
S.
Fan
,
M. L.
Brongersma
,
M. D.
McGehee
, and
Y.
Cui
,
Nano Lett.
12
,
2971
(
2012
).
15.
S.
Avasthi
,
S.
Lee
,
Y.-L.
Loo
, and
J. C.
Sturm
,
Adv. Mater.
23
,
5762
(
2011
).
16.
T.-G.
Chen
,
B.-Y.
Huang
,
E.-C.
Chen
,
P.
Yu
, and
H.-F.
Meng
,
Appl. Phys. Lett.
101
,
033301
(
2012
).
17.
M. J.
Price
,
J. M.
Foley
,
R. A.
May
, and
S.
Maldonado
,
Appl. Phys. Lett.
97
,
083503
(
2010
).
18.
K.
Peng
,
Y.
Xu
,
Y.
Wu
,
Y.
Yan
,
S.-T.
Lee
, and
J.
Zhu
,
Small.
1
,
1062
(
2005
).
19.
C.-Y.
Chen
,
C.-S.
Wu
,
C.-J.
Chou
, and
T.-J.
Yen
,
Adv. Mater.
20
,
3811
(
2008
).
20.
O.
Gunawan
and
S.
Guha
,
Sol. Energy Mater. Sol. Cells
93
,
1388
(
2009
).
21.
E.
Garnett
and
P.
Yang
,
Nano Lett.
10
,
1082
(
2010
).
22.
S. M.
Sze
,
Semiconductor Devices: Physics and Technology
(
Wiley
,
2008
).
23.
S.
Pandey
and
S.
Kal
,
Solid-State Electron.
42
,
943
(
1998
).
24.
M. M.
El-Nahass
,
H. M.
Zeyada
,
K. F.
Abd-El-Rahman
, and
A. A. A.
Darwish
,
Sol. Energy Mater. Sol. Cells
91
,
1120
(
2007
).
25.
S.
Maldonado
,
D.
Knapp
, and
N. S.
Lewis
,
J. Am. Chem. Soc.
130
,
3300
(
2008
).
26.
J.
Reichman
,
Appl. Phys. Lett.
38
,
251
(
1981
).
27.
See supplementary material at http://dx.doi.org/10.1063/1.4773368 for device fabrication process, Dit extraction method and vn extraction method.

Supplementary Material

You do not currently have access to this content.