The electro-optic properties of strained GaInAsSb/GaAs quantum wells (QWs) are investigated. A single QW p-i-n sample was grown by molecular beam epitaxy with antimony (Sb) pre-deposition technique. We numerically predict and experimentally verify a strong quantum confined Stark shift of 40 nm. We also predict a fast absorption recovery times crucial of high-speed optoelectronic devices mainly due to strong electron tunneling and thermionic emission. Predicted recovery times are corroborated by bias and temperature dependent time-resolved photoluminescence measurements indicating (30 ps) recovery times. This makes GaInAsSb QW an attractive material particularly for electroabsorption modulators and saturable absorbers.

1.
Y.
Cheng
,
J.
Pan
,
Y.
Wang
,
F.
Zhou
,
B.
Wang
,
L.
Zhao
,
H.
Zhu
, and
W.
Wang
,
IEEE Photon. Technol. Lett.
21
,
356
(
2009
).
2.
Ch.
Sun
,
B.
Xiong
,
J.
Wang
,
P.
Cai
,
J.
Xu
,
J.
Huang
,
H.
Yuan
,
Q.
Zhou
, and
Y.
Luo
,
J. Lightw. Technol.
26
,
1464
(
2008
).
3.
G. P.
Agrawal
,
Fiber-Optic Communication Systems
(
Wiley Series Hardcover
,
2010
)
4.
M. S.
Alias
,
S. M.
Mitani
, and
F.
Maskurity
,
Optik
123
,
1051
(
2012
).
5.
J. S.
Harris
,
Semicond. Sci. Technol.
17
,
880
(
2002
).
6.
G.
Adolfsson
,
S.
Wang
,
M.
Sadeghi
,
J.
Bengtsson
,
A.
Larsson
,
J. J.
Lim
,
V.
Vilokkinen
, and
P.
Melanen
,
IEEE J. Quantum Electron.
44
,
607
(
2008
).
7.
M.
Kondow
,
K.
Uomi
,
A.
Niwa
,
T.
Kitatani
,
S.
Watahiki
, and
Y.
Yazawa
,
Jpn. J. Appl. Phys.
35
,
1273
(
1996
).
8.
M.
Kondow
,
T.
Kitatani
,
S.
Nakatsuka
,
M. C.
Larson
,
K.
Nakahara
,
Y.
Yazawa
,
M.
Okai
, and
K.
Uomi
,
IEEE J. Sel. Top. Quantum Electron.
3
,
719
(
1997
).
9.
A.
Yu. Egorov
,
A. E.
Zhukov
, and
V. M.
Ustinov
,
J. Electron. Mater.
30
,
477
(
2001
).
10.
L. W.
Sun
and
H. H.
Lin
,
Appl. Phys. Lett.
83
,
1107
(
2003
).
11.
P.
Sundgren
,
J.
Berggren
,
P.
Goldman
, and
M.
Hammar
,
Appl. Phys. Lett.
87
,
071104
(
2005
).
12.
N.
Tansu
and
L. J.
Mawst
,
Appl. Phys. Lett.
82
,
1500
(
2003
).
13.
N.
Tansu
,
J.-Y.
Yeh
, and
L. J.
Mawst
,
Appl. Phys. Lett.
83
,
2512
(
2003
).
14.
S.
Wu
and
L.
Wan
,
J. Appl. Phys.
110
,
123109
(
2011
).
15.
R.
Fehse
,
S.
Tomic
,
A. R.
Adams
,
S. J.
Sweeney
,
E. P.
O'Reilly
,
A.
Andreev
, and
H.
Riechert
,
IEEE J. Sel. Top. Quantum Electron.
8
,
801
(
2002
).
16.
J. W.
Ferguson
,
P.
Blood
,
P. M.
Smowton
,
H.
Bae
,
T.
Sarmiento
,
J. S.
Harris
,
N.
Tansu
, and
L. J.
Mawst
,
IEEE J. Quantum Electron.
47
,
870
(
2011
).
17.
O.
Anton
,
C. S.
Menoni
,
J. Y.
Yeh
,
L. J.
Mawst
,
J. M.
Pikal
, and
N.
Tansu
,
IEEE Photon. Technol. Lett.
17
,
953
(
2005
).
18.
F.
Schttiger
,
D.
Bauer
,
J.
Demsar
,
T.
Dekorsy
,
J.
Kleinbauer
,
D. H.
Sutter
,
J.
Puustinen
, and
M.
Guina
,
Appl. Phys. B
106
,
605
612
(
2012
).
19.
N.
Tansu
,
N. J.
Kirsch
, and
L. J.
Mawst
,
Appl. Phys. Lett.
81
,
2523
(
2002
).
20.
H.
Zhao
,
S. M.
Wang
,
Q. X.
Zhao
,
M.
Sadeghi
, and
A.
Larsson
,
J. Cryst. Growth
311
,
1723
(
2009
).
21.
D.
Jiang
,
Y.-H.
Qu
,
H.-Q.
Ni
,
D.-H.
Wu
,
Y.-Q.
Xu
, and
Z.-Ch.
Niu
,
J. Cryst. Growth
288
,
12
(
2006
).
22.
J. C.
Harmand
,
L. H.
Li
,
G.
Patriarche
, and
L.
Travers
,
Appl. Phys. Lett.
84
,
3981
(
2004
).
23.
T.
Kageyama
,
T.
Miyamoto
,
M.
Ohta
,
T.
Matsuura
,
Y.
Matsui
,
T.
Furuhata
, and
F.
Koyama
,
J. Appl. Phys.
96
,
44
(
2004
).
24.
Y. H.
Qu
,
D. S.
Jiang
,
D. H.
Wu
,
Z. C.
Niu
, and
Z.
Sun
,
Chin. Phys. Lett.
22
,
2088
(
2005
).
You do not currently have access to this content.