Piezoresistive carbon nanotube (CNT) composites can radically enhance structural identification and health monitoring through continuous self-sensing. However, prevailing piezoresistivity models examine only uniaxial strain and are too computationally burdensome to be implemented on a structural scale. This research circumvents these limitations by developing an analytical piezoresistivity model for CNT composites that is adaptable to the finite element formulation enabling the analysis of complicated structures subjected to arbitrary strain. The accuracy of the model is verified by comparison to uniaxial piezoresistivity experiments in existing literature.

1.
L.
Böger
,
M. H. G.
Winchmann
,
L. O.
Meyer
, and
K.
Schulte
,
Compos. Sci. Technol.
68
,
1886
(
2008
).
2.
M.
Nofar
,
S. V.
Hoa
, and
M. D.
Pugh
,
Compos. Sci. Technol.
69
,
1599
(
2009
).
3.
E. T.
Thostenson
and
T. W.
Chou
,
Nanotechnology
19
,
215713
(
2008
).
4.
T. C.
Hou
,
K. J.
Loh
, and
J. P.
Lynch
,
Nanotechnology
18
,
315501
(
2007
).
5.
K. J.
Loh
,
T. C.
Hou
,
J. P.
Lynch
, and
N. A.
Kotov
,
J. Nondestruct. Eval.
28
,
9
(
2009
).
6.
N.
Hu
,
Y.
Karube
,
C.
Yan
,
Z.
Masuda
, and
H.
Fukunaga
,
Acta Mater.
56
,
2929
(
2008
).
7.
N.
Hu
,
Y.
Karube
,
M.
Arai
,
T.
Watanabe
,
C.
Yan
,
Y.
Li
,
Y.
Liu
, and
H.
Fukunaga
,
Carbon
48
,
680
(
2010
).
8.
W.
Zhang
,
J.
Suhr
, and
N.
Koratkar
,
J. Nanosci. Nanotechnol.
6
,
960
(
2006
).
9.
X.
Zhou
,
E.
Shin
,
K. W.
Wang
, and
C. E.
Bakis
,
Compos. Sci. Technol.
64
,
2425
(
2004
).
10.
A.
Liu
,
K. W.
Wang
, and
C. E.
Bakis
,
Composites, Part A
42
,
1748
(
2011
).
11.
A.
Liu
,
K. W.
Wang
, and
C. E.
Bakis
,
J. Compos. Mater.
44
,
2301
(
2010
).
12.
N.
Hu
,
Z.
Masuda
,
G.
Yamamoto
,
H.
Fukunaga
,
T.
Hashida
, and
J.
Qiu
,
Composites, Part A
39
,
893
(
2008
).
13.
J. K. W.
Sandler
,
J. E.
Kirk
,
I. A.
Kinloch
,
M. S. P.
Shaffer
, and
A. H.
Windle
,
Polymer
44
,
5893
(
2003
).
14.
A.
Vavouliotis
,
E.
Fiamegou
,
P.
Karapappas
,
G. C.
Psarras
, and
V.
Kostopoulos
,
Polym. Compos.
31
,
1874
(
2010
).
15.
R.
Rahman
and
P.
Servati
,
Nanotechnology
23
,
055703
(
2012
).
16.
M.
Taya
,
W. J.
Kim
, and
K.
Ono
,
Mech. Mater.
28
,
53
(
1998
).
17.
F.
Deng
and
Q. S.
Zheng
,
Appl. Phys. Lett.
92
,
071902
(
2008
).
18.
T.
Takeda
,
Y.
Shindo
,
Y.
Kuronuma
, and
F.
Narita
,
Polymer
52
,
3852
(
2011
).
19.
J. G.
Simmons
,
J. Appl. Phys.
34
,
1793
(
1963
).
20.
C.
Lu
and
Y. W.
Mai
,
J. Mater. Sci.
43
,
6012
(
2008
).
21.
S.
Kirkpatrick
,
Rev. Mod. Phys.
45
,
574
(
1973
).
22.
F.
Grillard
,
C.
Jaillet
,
C.
Zakri
,
P.
Miaudet
,
A.
Derrè
,
A.
Korzhenko
,
P.
Gaillard
, and
P.
Poulin
,
Polymer
53
,
183
(
2012
).
23.
F.
Du
,
J. E.
Fischer
, and
K. I.
Winey
,
Phys. Rev. B
72
,
121404
(
2005
).
24.
X.
Zeng
,
X.
Xu
,
P. M.
Shenai
,
E.
Kovalev
,
C.
Baudot
,
N.
Mathews
, and
Y.
Zhao
,
J. Phys. Chem. C
115
,
21685
(
2011
).
25.
A.
Celzard
,
E.
McRae
,
C.
Deleuze
,
M.
Dufort
,
G.
Furdin
, and
J. F.
Marêchè
,
Phys. Rev. B
53
,
6209
(
1996
).
26.
I.
Balberg
,
C. H.
Anderson
,
S.
Alexander
, and
N.
Wagner
,
Phys. Rev. B
30
,
3933
(
1984
).
27.
Y.
Yu
,
G.
Song
, and
L.
Sun
,
J. Appl. Phys.
108
,
084319
(
2010
).
28.
Y. S.
Song
and
J. R.
Youn
,
Polymer
47
,
1741
(
2006
).
29.
I.
Kang
,
M. J.
Schulz
,
J. H.
Kim
,
V.
Shanov
, and
D.
Shi
,
Smart Mater. Struct.
15
,
737
(
2006
).
You do not currently have access to this content.