We have investigated the complex conductivity of silver nanowire thin films using terahertz time-domain spectroscopy. Maxwell-Garnett effective medium theory, which accounts for the effective complex conductivity of silver nanowires, is presented in detail theoretically and experimentally. The conductivity of nanowires exhibits a characteristic non-Drude response in which the applied terahertz field is polarized in the longitudinal nanowire direction. The non-Drude responses of the silver nanowires are explained by the Gans approximation and the Drude-Smith model, and both agree well with the experimental data. Our results provide a basis for further explorations of charge carrier dynamics in nanowire-based transparent electrode applications.

1.
M. G.
Kang
,
T.
Xu
,
H. J.
Park
,
X.
Luo
, and
L. J.
Guo
,
Adv. Mater.
22
,
4378
(
2010
).
2.
Z.
Yu
,
L.
Li
,
Q.
Zhang
,
W.
Hu
, and
Q.
Pei
,
Adv. Mater.
23
,
4453
(
2011
).
3.
Z.
Yu
,
Q.
Zhang
,
L.
Li
,
Q.
Chen
,
X.
Niu
,
J.
Liu
, and
Q.
Pei
,
Adv. Mater.
23
,
664
(
2011
).
4.
C.
Liu
and
X.
Yu
,
Nanoscale Res. Lett.
6
,
75
(
2011
).
5.
K. S.
Kim
,
Y.
Zhao
,
H.
Jang
,
S. Y.
Lee
,
J. M.
Kim
,
J. H.
Ahn
,
P.
Kim
,
J. Y.
Choi
, and
B. H.
Hong
,
Nature
457
,
706
(
2009
).
6.
J. Y.
Lee
,
S. T.
Connor
,
Y.
Cui
, and
P.
Peumans
,
Nano Lett.
8
,
689
(
2008
).
7.
T. L.
Cocker
,
L. V.
Titova
,
S.
Fourmaux
,
H. C.
Bandulet
,
D.
Brassard
,
J. C.
Kieffer
,
M. A.
El Khakani
, and
F. A.
Hegmann
,
Appl. Phys. Lett.
97
,
221905
(
2010
).
8.
J. W.
Haus
,
R.
Inguva
, and
C. M.
Bowden
,
Phys. Rev. A
40
,
5729
(
1989
).
9.
J. S.
Ahn
,
K. H.
Kim
,
T. W.
Noh
,
D. H.
Riu
,
K. H.
Boo
, and
H. E.
Kim
,
Phys. Rev. B
52
,
15244
(
1995
).
10.
C.
Kang
,
I. H.
Maeng
,
S. J.
Oh
,
S. C.
Lim
,
K. H.
An
,
Y. H.
Lee
, and
J. H.
Son
,
Phys. Rev. B
75
,
085410
(
2007
).
11.
H.
Němec
,
P.
Kužel
, and
V.
Sundström
,
Phys. Rev. B
79
,
115309
(
2009
).
12.
A.
Thoman
,
A.
Kern
,
H.
Helm
, and
M.
Walther
,
Phys. Rev. B
77
,
195405
(
2008
).
13.
M.
Walther
,
D. G.
Cooke
,
C.
Sherstan
,
M.
Hajar
,
M. R.
Freeman
, and
F. A.
Hegmann
,
Phys. Rev. B
76
,
125408
(
2007
).
14.
Y.
Sun
,
Y.
Yin
,
B. T.
Mayers
,
T.
Herricks
, and
Y.
Xia
,
Chem. Mater.
14
,
4736
(
2002
).
15.
S.
De
,
T. M.
Higgins
,
P. E.
Lyons
,
E. M.
Doherty
,
P. N.
Nirmalraj
,
W. J.
Blau
,
J. J.
Boland
, and
J. N.
Coleman
,
ACS Nano
3
,
1767
(
2009
).
16.
T. I.
Jeon
,
K. J.
Kim
,
C.
Kang
,
I. H.
Maeng
,
J. H.
Son
,
K. H.
An
,
J. Y.
Lee
, and
Y. H.
Lee
,
J. Appl. Phys.
95
,
5736
(
2004
).
17.
S.
Link
,
M. B.
Mohamed
, and
M. A.
El-Sayed
,
J. Phys. Chem. B
103
,
3073
(
1999
).
19.
G. C.
Papavassiliou
,
Prog. Solid State Chem.
12
,
185
(
1979
).
20.
J. J.
Mock
,
S. J.
Oldenburg
,
D. R.
Smith
,
D. A.
Schultz
, and
S.
Schultz
,
Nano Lett.
2
,
465
(
2002
).
21.
Q. N.
Luu
,
J. M.
Doorn
,
M. T.
Berry
,
C.
Jiang
,
C.
Lin
, and
P. S.
May
,
J. Colloid Interface Sci.
356
,
151
(
2011
).
22.
P.
Parkinson
,
J.
Lloyd-Hughes
,
Q.
Gao
,
H. H.
Tan
,
C.
Jagadish
,
M. B.
Johnston
, and
L. M.
Herz
,
Nano Lett.
7
,
2162
(
2007
).
23.
J. H.
Strait
,
P. A.
George
,
M.
Levendorf
,
M.
Blood-Forsythe
,
F.
Rana
, and
J.
Park
,
Nano Lett.
9
,
2967
(
2009
).
24.
N. V.
Smith
,
Phys. Rev. B
64
,
155106
(
2001
).
25.
J. W.
Mitchell
and
R. G.
Goodrich
,
Phys. Rev. B
32
,
4969
(
1985
).
26.
M. A.
Ordal
,
L. L.
Long
,
R. J.
Bell
,
S. E.
Bell
,
R. R.
Bell
,
R. W.
Alexander
, Jr.
, and
C. A.
Ward
,
Appl. Opt.
22
,
1099
(
1983
).
You do not currently have access to this content.