The elastocaloric effect that occurs during the stress-induced martensitic transformation in shape memory alloys is a promising mechanism in view of solid state cooling applications. It also allows for downscaling to feature sizes in the μm range, thus, being attractive for micro-cooling applications using thin film materials. In this study, elastocaloric properties of TiNi and TiNiCu films and their relation to functional fatigue were investigated. Both materials show similar effect sizes, their fatigue behavior is however different. While the temperature change in TiNi degrades by a factor of two within 150 cycles, no significant elastocaloric fatigue was found in TiNiCu.

1.
E.
Bonnot
,
R.
Romero
,
L.
Manosa
,
E.
Vives
, and
A.
Planes
,
Phys. Rev. Lett.
100
,
125901
(
2008
).
2.
L.
Manosa
,
A.
Planes
,
E.
Vives
,
E.
Bonnot
, and
R.
Romero
,
Funct. Mater. Lett.
2
,
73
78
(
2009
).
3.
W.
Tang
,
R.
Sandström
,
Z. G.
Wei
, and
S.
Miyazaki
,
Metall. Mater. Trans. A
31A
,
2423
2430
(
2000
).
4.
K.
Mukherjee
,
S.
Sircar
, and
N. B.
Dahotre
,
Mater. Sci. Eng.
74
,
75
84
(
1985
).
5.
P. G.
McCormick
,
Y.
Liu
, and
S.
Miyazaki
,
Mater. Sci. Eng., A
167
,
51
56
(
1993
).
6.
E. A.
Pieczyska
,
S. P.
Gadaj
,
W. K.
Nowacki
, and
H.
Tobushi
,
Bull. Pol. Acad. Sci.: Tech. Sci.
52
,
165
171
(
2004
).
7.
A.
Isalgue
,
V.
Torra
,
A.
Yawny
, and
F. C.
Lovey
,
J. Therm. Anal.
91
,
991
998
(
2008
).
8.
V.
Torra
,
C.
Auguet
,
A.
Isalgue
,
F. C.
Lovey
,
A.
Sepulveda
, and
H.
Soul
,
J. Therm. Anal. Calorim.
102
,
671
680
(
2010
).
9.
J.
Frenzel
,
Z.
Zhang
,
K.
Neuking
, and
G.
Eggeler
,
J. Alloys Compd.
385
,
214
223
(
2004
).
10.
C.
Zamponi
,
H.
Rumpf
,
C.
Schmutz
, and
E.
Quandt
,
Mater. Sci. Eng., A
481
,
623
625
(
2008
).
11.
C.
Zamponi
,
R.
Lima de Miranda
, and
E.
Quandt
, in
Thin Film Shape Memory Alloys: Fundamentals and Device Applications
, edited by
S.
Miyazaki
,
Y. Q.
Fu
, and
W. M.
Huang
, 1st ed. (
Cambridge University Press
,
2009
), pp.
370
384
.
12.
R.
Lima de Miranda
,
C.
Zamponi
, and
E.
Quandt
,
Smart Mater. Struct.
18
,
104010
(
2009
).
13.
H.
Rumpf
,
T.
Walther
,
C.
Zamponi
, and
E.
Quandt
,
Mater. Sci. Eng., A
415
,
304
308
(
2006
).
14.
T.
Nam
,
T.
Saburi
, and
K.
Shimizu
,
Mater. Trans., JIM
31
,
959
967
(
1990
).
15.
T.
Nam
,
T.
Saburi
,
Y.
Nakata
, and
K.
Shimizu
,
Mater. Trans.
31
,
1050
1056
(
1990
).
16.
T.
Nam
,
T.
Saburi
,
Y.
Kawamura
, and
K.
Shimizu
,
Mater. Trans., JIM
31
,
262
269
(
1990
).
17.
B.
Strnadel
,
S.
Ohashi
,
H.
Ohtsuka
,
T.
Ishihara
, and
S.
Miyazaki
,
Mater. Sci. Eng., A
202
,
148
156
(
1995
).
18.
S.
Miyazaki
,
K.
Mizukoshi
,
T.
Ueki
,
T.
Sakuma
, and
Y.
Liu
,
Mater. Sci. Eng., A
273–275
,
658
663
(
1999
).
19.
S.
Miyazaki
,
T.
Hashinaga
, and
A.
Ishida
,
Thin Solid Films
281–282
,
364
367
(
1996
).
20.
P.
Krulevitch
,
P. B.
Ramsey
,
D. M.
Makowiecki
,
A. P.
Lee
,
M. A.
Northrup
, and
G. C.
Johnson
,
Thin Solid Films
274
,
101
105
(
1996
).
21.
B.
Winzek
and
E.
Quandt
,
Z. Metallkd.
90
,
796
802
(
1999
).
22.
J. M.
Ball
and
R. D.
James
,
Arch. Rational Mech. Anal.
100
,
13
52
(
1987
).
23.
R. D.
James
and
Z.
Zhang
, in
Interplay of Magnetism and Structure in Functional Materials
, edited by
L.
Manosa
,
A.
Planes
, and
A.
Saxena
(
Springer‐Verlag
,
2004
), pp.
159
176
.
24.
K.
Bhattacharya
,
S.
Conti
, and
G.
Zanzotto
,
Nature
428
,
55
59
(
2004
).
25.
K. F.
Hane
and
T. W.
Shield
,
Acta Mater.
47
,
2603
2617
(
1999
).
26.
J.
Cui
,
Y. S.
Chu
,
O. O.
Famodu
,
Y.
Furuya
,
J.
Hattrick-Simpers
,
R. D.
James
,
A.
Ludwig
,
S.
Thienhaus
,
M.
Wuttig
,
Z.
Zhang
, and
I.
Takeuchi
,
Nature Mater.
5
,
286
290
(
2006
).
27.
Z.
Zhang
,
R. D.
James
, and
S.
Müller
,
Acta Mater.
57
,
4332
4352
(
2009
).
28.
R.
Zarnetta
,
R.
Takahashi
,
M. L.
Young
,
A.
Savan
,
Y.
Furuya
,
S.
Thienhaus
,
B.
Maaß
,
M.
Rahim
,
J.
Frenzel
,
H.
Brunken
,
Y. S.
Chu
,
V.
Srivastava
,
R. D.
James
,
I.
Takeuchi
,
G.
Eggeler
, and
A.
Ludwig
,
Adv. Funct. Mater.
20
,
1917
(
2010
).
29.
E. A.
Pieczyska
,
J. Mod. Opt.
57
,
1700
1707
(
2010
).
You do not currently have access to this content.