This paper presents a method to manipulate cells in a microfluidic chip without contact. A local streamline is generated when high-frequency oscillation of the microtool is induced in a microfluidic chip. The streamline can be controlled by tuning the oscillation parameters of the tool, such as the amplitude and phase of the oscillation. Cells then flow in the microchannel in accordance with the streamline, and their position, posture, and trajectories are controlled. Bovine oocyte manipulations, which were attraction, repulsion, and rotation, were conducted to demonstrate the capability of the proposed method without any contact by the oscillation tool.

1.
Y.
Murayama
,
C. E.
Constantinou
, and
S.
Omata
,
J. Biomech.
37
,
67
72
(
2004
).
2.
T.
Wakayama
,
A. C. F.
Perry
,
M.
Zuccotti
,
K. R.
Johnson
, and
R.
Yanagimachi
,
Nature
394
,
369
374
(
1998
).
3.
X.
Liu
,
R.
Fernandes
,
A.
Jurisicova
,
R. F.
Casper
, and
Y.
Sun
,
Lab Chip
10
,
2154
2161
(
2010
).
4.
M. S.
Sakar
,
E. B.
Steager
,
D. H.
Kim
,
M. J.
Kim
,
G. J.
Pappas
, and
V.
Kumar
,
Appl. Phys. Lett.
96
,
043705
(
2010
).
5.
E.
Diller
,
S.
Floyd
,
C.
Pawashe
, and
M.
Sitti
,
IEEE Trans. Rob.
28
(
1
),
172
182
(
2012
).
6.
S.
Tottori
,
L.
Zhang
,
F.
Qiu
,
K. K.
Krawczyk
,
A. F.
Obregon
, and
B. J.
Nelson
,
Adv. Mater.
24
,
811
816
(
2012
).
7.
W.
Hu
,
K. S.
Ishii
, and
A. T.
Ohta
,
Appl. Phys. Lett.
99
,
094103
(
2011
).
8.
Y.
Sun
,
J. S.
Evans
,
T.
Lee
,
B.
Senyuk
,
P.
Keller
,
S.
He
, and
I. I.
Smalyukh
,
Appl. Phys. Lett.
100
,
241901
(
2012
).
9.
K.
Onda
and
F.
Arai
,
Opt. Express
20
(
9
),
3633
3641
(
2012
).
10.
D. H.
Kim
,
U.
Kei Cheang
,
L.
Kohidai
,
D.
Byun
, and
M. J.
Kim
,
Appl. Phys. Lett.
97
,
173702
(
2010
).
11.
Y.
Akiyama
,
K.
Iwabuchi
,
Y.
Furukawa
, and
K.
Morishima
,
Lab Chip
9
(
1
),
140
144
(
2009
).
12.
L. Y.
Yeo
and
J. R.
Friend
,
Biomicrofluidics
3
,
012002
(
2009
).
13.
L.
Meng
,
F.
Cai
,
J.
Chen
,
L.
Niu
,
Y.
Li
,
J.
Wu
, and
H.
Zheng
,
Appl. Phys. Lett.
100
,
173701
(
2012
).
14.
J.
Shi
,
D.
Ahmed
,
X.
Mao
,
S.-C. S.
Lin
,
A.
Lawit
, and
T. J.
Huang
,
Lab Chip
9
,
2890
2895
(
2009
).
15.
S.
Grilli
and
P.
Ferraro
,
Appl. Phys. Lett.
92
,
232902
(
2008
).
16.
S. K.
Srivastava
,
A.
Gencoglu
, and
A. R.
Minerick
,
Anal. Bioanal. Chem.
399
,
301
321
(
2010
).
17.
W. A.
Braff
,
A.
Pignier
, and
C. R.
Buie
,
Lab Chip
12
,
1327
1331
(
2012
).
18.
A. A. S.
Bhagat
,
H. W.
Hou
,
L. D.
Li
,
C. T.
Lim
, and
J.
Han
,
Lab Chip
11
,
1870
1878
(
2011
).
19.
H. A.
Nieuwstadt
,
R.
Seda
,
D. S.
Li
,
J. B.
Fowlkes
, and
J. L.
Bull
,
Biomed. Microdevices
13
,
97
105
(
2011
).
20.
R. S.
Taylor
and
C.
Hnatovsky
,
Opt. Express
12
(
5
),
916
928
(
2004
).
21.
S. K.
Chung
and
S. K.
Cho
,
J. Micromech. Microeng.
18
,
125024
(
2008
).
22.
S. K.
Chung
and
S. K.
Cho
,
Microfluid. Nanofluid.
6
,
261
265
(
2009
).
23.
C.Y.
Wang
,
J. Fluid Mech.
32
,
55
68
(
1968
).
24.
T.
Sarpkaya
,
J. Fluid Mech.
165
,
61
71
(
1986
).
25.
M.
Tatsuno
and
P. W.
Bearman
,
J. Fluid Mech.
211
,
157
182
(
1990
).
26.
C. Y.
Wang
and
B.
Drachman
,
Appl. Sci. Res.
39
,
55
68
(
1982
).
27.
J. P.
Owen
and
W. S.
Ryu
,
Eur. J. Phys.
26
,
1085
1091
(
2005
).
28.
M.
Hagiwara
,
T.
Kawahara
,
Y.
Yamanishi
, and
F.
Arai
,
Appl. Phys. Lett.
97
,
013701
(
2010
).
29.
M.
Hagiwara
,
T.
Kawahara
,
Y.
Yamanishi
,
T.
Masuda
,
L.
Feng
, and
F.
Arai
,
Lab Chip
11
,
2049
2054
(
2011
).
30.
M.
Hagiwara
,
T.
Kawahara
,
T.
Iijima
,
Y.
Yamanishi
, and
F.
Arai
, in
Proceedings of IEEE International Conference on Robotics and Automation (ICRA)
, St. Paul Minnesota, USA,
2012
, pp.
2517
2522
.
You do not currently have access to this content.