We present a scheme whereby a static non-linear, non-invertible transmission function performed by the electro-optic Mach-Zehnder modulator produces highly complex optical chaos. The scheme allows the deterministic transformation of low-dimensional band-limited chaotic signals into much higher-dimensional structures with broadband spectra and without using any delay elements or feedback. Standard benchmark tests show that all the considered complexity indices are highly increased due to this transformation in a controlled fashion. This mechanism allows the design of simple optoelectronic delayed oscillators with extremely complex chaotic output.

1.
L. M.
Pecora
and
T.
Carroll
,
Phys. Rev. Lett.
64
,
821
(
1990
);
[PubMed]
K. M.
Cuomo
,
A. V.
Oppenheim
, and
S. H.
Strogatz
,
IEEE Trans. Circuits Syst. II: Analog Digital Signal Process.
40
,
626
(
1993
);
G.
VanWiggeren
and
R.
Roy
,
Science
279
,
1198
(
1998
).
[PubMed]
2.
K.
Ikeda
,
Opt. Commun.
30
,
257
(
1979
).
3.
A.
Neyer
and
E.
Voges
,
Appl. Phys. Lett.
40
,
6
(
1982
).
4.
M.
Peil
,
M.
Jacquot
,
Y.
Kouomou
,
L.
Larger
, and
T.
Erneux
,
Phys. Rev. E
79
,
026208
(
2009
);
K.
Callan
,
L.
Illing
,
Z.
Ghao
,
D.
Gauthier
, and
E.
Schöll
,
Phys. Rev. Lett.
104
,
113901
(
2010
);
[PubMed]
Y. C.
Kouomou
,
P.
Colet
,
L.
Larger
, and
N.
Gastaud
,
Phys. Rev. Lett.
95
,
203903
(
2005
).
[PubMed]
5.
J.
Goedgebuer
,
P.
Levy
,
L.
Larger
,
C.
Chen
,
W.
Rhodes
,
B.
Ravoori
,
A.
Cohen
,
A.
Setty
,
F.
Sorrentino
,
T.
Murphy
,
E.
Ott
, and
R.
Roy
,
Phys. Rev. E
80
,
056205
(
2009
);
A.
Argyris
,
D.
Syvridis
,
L.
Larger
,
V.
Annovazzi-Lodi
,
P.
Colet
,
I.
Fischer
,
J.
García-Ojalvo
,
C.
Mirasso
,
L.
Pesquera
, and
K.
Shore
,
Nature
438
,
343
(
2005
).
[PubMed]
6.
J.
González
and
L.
Carvalho
,
Mod. Phys. Lett. B
11
,
521
(
1997
).
7.
J.
González
,
L.
Reyes
, and
L.
Guerrero
,
Chaos
11
,
1
(
2001
).
8.
J. A.
González
,
L.
Reyes
,
J.
Suárez
,
L.
Guerrero
, and
G.
Gutiérrez
,
Phys. Lett. A
259
,
25
(
2002
);
J.
Suárez
,
I.
Rondón
,
L.
Trujillo
, and
J.
González
,
Chaos, Solitons Fractals
21
,
603
(
2004
).
T.
Carroll
,
Am. J. Phys.
63
,
377
(
1995
);
E.
Tamaseviciute
,
A.
Tamasevicius
,
G.
Mykolaitis
,
S.
Bumeliene
, and
E.
Lindberg
,
Nonlinear Anal. Model. Control
13
,
241
(
2008
).
10.
S.
Kodba
,
M.
Perc
, and
M.
Marhl
,
Eur. J. Phys.
26
,
205
(
2005
).
11.
R.
Hegger
and
H.
Kantz
,
Chaos
9
,
413
(
1999
).
12.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
(
Cambridge University Press
,
Cambridge
,
1997
).
13.
A.
Fraser
and
H.
Swinney
,
Phys. Rev. A
33
,
1134
(
1986
).
14.
L.
Larger
,
P. A.
Lacourt
,
S.
Poinsot
, and
V.
Udaltsov
,
Laser Phys.
15
,
1209
(
2005
).
15.
T.
Murphy
,
A.
Cohen
,
B.
Ravoori
,
K.
Schmitt
,
A.
Setty
,
F.
Sorrentino
,
C.
Williams
,
E.
Ott
, and
R.
Roy
,
Philos. Trans R. Soc. London, Ser. A
368
,
343
(
2010
).
16.
M.
Kirby
,
Geometric Data Analysis
(
Wiley–Interscience
,
New York
,
2001
).
17.
A.
Franz
,
R.
Roy
,
L.
Shaw
, and
I.
Schwartz
,
Phys. Rev. Lett.
99
,
053905
(
2007
);
[PubMed]
A.
Franz
,
R.
Roy
,
L.
Shaw
, and
I.
Schwartz
,
Phys. Rev. E
78
,
016208
(
2008
).
You do not currently have access to this content.