We report the radio-frequency performance of carbon nanotube array transistors that have been realized through the aligned assembly of highly separated, semiconducting carbon nanotubes on a fully scalable device platform. At a gate length of 100 nm, we observe output current saturation and obtain as-measured, extrinsic current gain and power gain cut-off frequencies, respectively, of 7 GHz and 15 GHz. While the extrinsic current gain is comparable to the state-of-the-art, the extrinsic power gain is improved. The de-embedded, intrinsic current gain and power gain cut-off frequencies of 153 GHz and 30 GHz are the highest values experimentally achieved to date. We analyze the consistency of DC and AC performance parameters and discuss the requirements for future applications of carbon nanotube array transistors in high-frequency electronics.

2.
J.
Appenzeller
and
D. J.
Frank
,
Appl. Phys. Lett.
84
,
1771
(
2004
).
3.
S.
Li
,
Z.
Yu
,
S.-F.
Yen
,
W. C.
Tang
, and
P. J.
Burke
,
Nano Lett.
4
,
753
(
2004
).
4.
S.
Rosenblatt
,
H.
Lin
,
V.
Sazonova
,
S.
Tiwari
, and
P. L.
McEuen
,
Appl. Phys. Lett.
87
,
153111
(
2005
).
5.
A. A.
Pesetski
,
J. E.
Baumgardner
,
E.
Folk
,
J. X.
Przybysz
,
J. D.
Adam
, and
H.
Zhang
,
Appl. Phys. Lett.
88
,
113103
(
2006
).
6.
L.
Nougaret
,
G.
Dambrine
,
S.
Lepilliet
,
H.
Happy
,
N.
Chimot
,
V.
Derycke
, and
J. P.
Bourgoin
,
Appl. Phys. Lett.
96
,
042109
(
2010
).
7.
E. D.
Cobas
,
S. M.
Anlage
, and
M. S.
Fuhrer
,
IEEE Trans. Microwave Theory Tech.
59
,
2726
(
2011
).
8.
C.
Kocabas
,
H.-S.
Kim
,
T.
Banks
,
J. A.
Rogers
,
A. A.
Pesetski
,
J. E.
Baumgardner
,
S. V.
Krishnaswamy
, and
H.
Zhang
,
Proc. Nat. Acad. Sci. U.S.A.
105
,
1405
(
2008
).
9.
C.
Kocabas
,
S.
Dunham
,
Q.
Cao
,
K.
Cimino
,
X.
Ho
,
H.-S.
Kim
,
D.
Dawson
,
J.
Payne
,
M.
Stuenkel
,
H.
Zhang
,
T.
Banks
,
M.
Feng
,
S. V.
Rotkin
, and
J. A.
Rogers
,
Nano Lett.
9
,
1937
(
2009
).
10.
L.
Nougaret
,
H.
Happy
,
G.
Dambrine
,
V.
Derycke
,
J. P.
Bourgoin
,
A. A.
Green
, and
M. C.
Hersam
,
Appl. Phys. Lett.
94
,
243505
(
2009
).
11.
C.
Wang
,
A.
Badmaev
,
A.
Jooyaie
,
M.
Bao
,
K. L.
Wang
,
K.
Galatsis
, and
C.
Zhou
,
ACS Nano
5
,
4169
(
2011
).
12.
M.
Schroter
,
P.
Kolev
,
D.
Wang
,
M.
Eron
,
S.
Lin
,
N.
Samarakone
,
M.
Bronikowski
,
Z.
Yu
,
P.
Sampat
,
P.
Syams
,
S.
McKernan
,
2011
IEEE MTT-S International Microwave Symposium Digest (MTT)
,
2011
,
1
.
13.
C.
Rutherglen
,
D.
Jain
, and
P.
Burke
,
Nat. Nanotechnol.
4
,
811
(
2009
).
14.
M. S.
Arnold
,
A. A.
Green
,
J. F.
Hulvat
,
S. I.
Stupp
, and
M. C.
Hersam
,
Nat. Nanotechnol.
1
,
60
(
2006
).
15.
R.
Krupke
,
F.
Hennrich
,
H. B.
Weber
,
D.
Beckmann
,
O.
Hampe
,
S.
Malik
,
M. M.
Kappes
, and
H.
v. Loehneysen
,
Appl. Phys. A: Mater. Sci. Proc.
76
,
397
(
2003
).
16.
F.
Schwierz
and
J. J.
Liou
,
Solid-State Electron.
51
,
1079
(
2007
).
17.
H.
Cho
and
D. E.
Burk
,
IEEE Trans. Electron. Devices
38
,
1371
(
1991
).
18.
M. C. A. M.
Koolen
,
J. A. M.
Geelen
, and
M. P. J. G.
Versleijen
,
IEEE Proceedings of the 1991 Bipolar Circuits and Technology Meeting
(
1991
), p.
188
.
19.
Q.
Cao
,
M.
Xia
,
C.
Kocabas
,
M.
Shim
,
J. A.
Rogers
, and
S. V.
Rotkin
,
Appl. Phys. Lett.
90
,
023516
(
2007
).
20.
A. D.
Franklin
and
Z.
Chen
,
Nat. Nanotechnol.
5
,
858
(
2010
).
21.
N.
Chimot
,
V.
Derycke
,
M. F.
Goffman
,
J. P.
Bourgoin
,
H.
Happy
, and
G.
Dambrine
,
Appl. Phys. Lett.
91
,
153111
(
2007
).
22.
N.
Stuerzl
,
F.
Hennrich
,
S.
Lebedkin
, and
M. M.
Kappes
,
J. Phys. Chem. C
113
,
14628
(
2009
).
23.
H.
Liu
,
D.
Nishide
,
T.
Tanaka
, and
H.
Kataura
,
Nat. Commun.
2
,
309
(
2011
).
24.
A. A.
Green
and
M. C.
Hersam
,
Adv. Mater.
23
,
2185
(
2011
).
25.
F.
Schwierz
,
Nat. Nanotechnol.
5
,
487
(
2010
).
26.
See supplementary material at http://dx.doi.org/10.1063/1.4742325 for a description of the electrical transport measurements.

Supplementary Material

You do not currently have access to this content.