The thermal conductivities of SiGe alloy nanowires with different Ge concentrations and diameters were measured at 60–450 K, and all the nanowires for the measurements were characterized by electron microscopies for accurately determining dimensions and atomic concentrations. With 37–63 at. % Ge concentrations and 44–60 nm diameters, their thermal conductivities approached to the minimum thermal conductivity of SiGe alloys due to strong phonon scatterings. This may suggest these parameters are sufficient to result in the smallest achievable thermal conductivity with SiGe in practice. A parallel resistor model was employed to investigate the influence of silicon oxide layers on their thermal conductivities.

1.
J. P.
Dismukes
,
L.
Ekstrom
,
E. F.
Steigmeier
,
I.
Kudman
, and
D. S.
Beers
,
J. Appl. Phys.
35
,
2899
(
1964
).
2.
A. I.
Hochbaum
,
R.
Chen
,
R. D.
Delgado
,
W.
Liang
,
E. C.
Garnett
,
M.
Najarian
,
A.
Majumdar
, and
P.
Yang
,
Nature (London)
451
,
163
(
2008
).
3.
D.
Li
,
Y.
Wu
,
R.
Fan
,
P.
Yang
, and
A.
Majumdar
,
Appl. Phys. Lett.
83
,
3186
3188
(
2003
).
4.
H.
Kim
,
I.
Kim
,
H. J.
Choi
, and
W.
Kim
,
Appl. Phys. Lett.
96
,
233106
(
2010
).
5.
L.
Shi
,
D.
Li
,
C.
Yu
,
W.
Jang
,
D.
Kim
,
Z.
Yao
,
P.
Kim
, and
A.
Majumdar
,
ASME Trans. J. Heat Transfer
125
,
881
888
(
2003
).
6.
C.
Yu
,
S.
Saha
,
J. H.
Zhou
,
L.
Shi
,
A. M.
Cassell
,
B. A.
Cruden
,
Q.
Ngo
, and
J.
Li
,
ASME Trans. J. Heat Transfer
128
,
234
239
(
2006
).
7.
J.
Park
,
Y.
Ryu
,
H.
Kim
, and
C.
Yu
,
Nanotechnology
20
,
105608
(
2009
).
8.
C.
Yu
and
J.
Park
,
J. Solid State Chem.
183
,
2268
2273
(
2010
).
9.
L.
Yin
and
C.
Yu
,
J. Solid State Chem.
187
,
58
63
(
2012
).
10.
R.
Hull
,
Properties of Crystalline Silicon
(
INSPEC
,
The Institution of Electrical Engineers
,
1999
).
11.
R.
Dalven
,
Infrared Phys.
6
,
129
143
(
1966
).
12.
O. V.
Mazurin
,
M. V.
Streltsina
, and
T. P.
Shvaiko-Shvaikovskaya
,
Handbook of Glass Data: Silica Glass and Binary Silicate Glasses
(
Elsevier
,
Amsterdam
,
1983
).
13.
D. G.
Cahill
,
S. K.
Watson
, and
R. O.
Pohl
,
Phys. Rev. B
46
,
6131
6140
(
1992
).
14.
R.
Chen
,
A. I.
Hochbaum
,
P.
Murphy
,
J.
Moore
,
P.
Yang
, and
A.
Majumdar
,
Phys. Rev. Lett.
101
,
105501
(
2008
).
15.
E. K.
Lee
,
L.
Yin
,
Y.
Lee
,
J. W.
Lee
,
S. J.
Lee
,
J.
Lee
,
S. N.
Cha
,
D.
Whang
,
G. S.
Hwang
,
K.
Hippalgaonkar
,
A.
Majumdar
,
C.
Yu
,
B. L.
Choi
,
J. M.
Kim
, and
K.
Kim
,
Nano Lett.
12
,
2918
2923
(
2012
).
16.
C.
Guthy
,
C.-Y.
Nam
, and
J. E.
Fischer
,
J. Appl. Phys.
103
,
064319
(
2008
).
17.
H.
Stohr
and
Z. W.
Klemm
,
Z. Anorg. Allg. Chem.
241
,
305
(
1954
).
18.
G. H.
Zhu
,
H.
Lee
,
Y. C.
Lan
,
X. W.
Wang
,
G.
Joshi
,
D. Z.
Wang
,
J.
Yang
,
D.
Vashaee
,
H.
Guilbert
,
A.
Pillitteri
,
M. S.
Dresselhaus
,
G.
Chen
, and
Z. F.
Ren
,
Phys. Rev. Lett.
102
,
196803
(
2009
).
You do not currently have access to this content.