Nanocrystalline ZrN thin films with 5 nm grain size, prepared by ion beam assisted deposition, maintained their isometric structure upon intensive displacive and ionizing irradiations, indicating an extremely high stability similar to bulk ZrN. However, a unique structural contraction up to 1.42% in lattice parameter occurred only in nano-sized ZrN upon displacive irradiations. A significant nitrogen loss occurred with reduced N:Zr atomic ratio to 0.88, probably due to the production of displaced nitrogen atoms and fast diffusion along grain boundaries in nanocrystalline ZrN matrix. The accumulation of nitrogen vacancies and related strain relaxation may be responsible for the structural contraction.

1.
K.
Wheeler
,
P.
Peralta
,
M.
Parra
,
K.
McClellan
,
J.
Dunwoody
, and
G.
Egeland
,
J. Nucl. Mater.
366
,
306
(
2007
).
2.
M.
Streit
,
F.
Ingold
,
M.
Pouchon
,
L. J.
Gauckler
, and
J. P.
Ottaviani
,
J. Nucl. Mater.
319
,
51
(
2003
).
3.
4.
R. J. M.
Konings
,
M.
Burghartz
,
G.
Ledergerber
,
H.
Hein
, and
R. R.
van der Laan
,
J. Nucl. Mater.
288
,
233
(
2001
).
5.
M.
Streit
and
F.
Ingold
,
J. Eur. Ceram. Soc.
25
,
2687
(
2005
).
6.
Y.
Arai
and
K.
Nakajima
,
J. Nucl. Mater.
281
,
244
(
2000
).
7.
W. M.
Pardue
,
F. A.
Rough
, and
R. A.
Smith
,
Nucl. Metall.
13
,
7
(
1967
).
8.
N.
Chauvin
,
R. J. M.
Konings
, and
H.
Matzke
,
J. Nucl. Mater.
274
,
105
(
1999
).
9.
M.
Rose
,
A. G.
Balogh
, and
H.
Hahn
,
Nucl. Instrum. Methods Phys. Res. B
127
,
119
(
1997
).
10.
M.
Rose
,
G.
Gorzawski
,
G.
Miehe
,
A. G.
Balogh
, and
H.
Hahn
,
Nanostruct. Mater.
6
,
731
(
1995
).
11.
T. D.
Shen
,
S.
Feng
,
M.
Tang
,
J. A.
Valdez
,
Y.
Wang
, and
K. E.
Sickafus
,
Appl. Phys. Lett.
90
,
263115
(
2007
).
12.
H.
Wang
,
R.
Araujo
,
J. G.
Swadener
,
Y. Q.
Wang
,
X.
Zhang
,
E. G.
Fu
, and
T.
Cagin
,
Nucl. Instrum. Methods Phys. Res. B
261
,
1162
(
2007
).
13.
J. M.
Zhang
,
J.
Lian
,
A. F.
Fuentes
,
F. X.
Zhang
,
M.
Lang
,
F. Y.
Lu
, and
R. C.
Ewing
,
Appl. Phys. Lett.
94
,
243110
(
2009
).
14.
J.
Gan
,
Y.
Yang
,
C.
Dickson
, and
T.
Allen
,
J. Nucl. Mater.
389
,
317
(
2009
).
15.
Y.
Yang
,
C. A.
Dickerson
, and
T. R.
Allen
,
J. Nucl. Mater.
392
,
200
(
2009
).
16.
F. Y.
Lu
,
M.
Lang
,
M. B.
Huang
,
F.
Namavar
,
C.
Trautmann
,
R. C.
Ewing
, and
J.
Lian
, “
ZrSi formation at ZrN/Si interface induced by ballistic and ionizing radiations
,”
Nucl. Instrum. Methods Phys. Res. B
(in press).
17.
A. N.
Christensen
and
S.
Fregerslev
,
Acta Chem. Scand., Ser. A
31
,
861
(
1977
).
18.
C.
Goyhenex
,
C. R.
Henry
, and
J.
Urban
,
Philos. Mag. A
69
,
1073
(
1994
).
19.
L. P.
Li
,
X. Q.
Qiu
, and
G. S.
Li
,
Appl. Phys. Lett.
87
,
124101
(
2005
).
20.
V.
Swamy
,
D.
Menzies
,
B. C.
Muddle
,
A.
Kuznetsov
,
L. S.
Dubrovinsky
,
Q.
Dai
, and
V.
Dmitriev
,
Appl. Phys. Lett.
88
,
243103
(
2006
).
21.
S.
Tsunekawa
,
K.
Ishikawa
,
Z. Q.
Li
,
Y.
Kawazoe
, and
A.
Kasuya
,
Phys. Rev. Lett.
85
,
3440
(
2000
).
22.
S.
Tsunekawa
,
S.
Ito
, and
Y.
Kawazoe
,
Appl. Phys. Lett.
85
,
3845
(
2004
).
23.
S.
Tsunekawa
,
R.
Sivamohan
,
S.
Ito
,
A.
Kasuya
, and
T.
Fukuda
,
Nanostruct. Mater.
11
,
141
(
1999
).
24.
S.
Tsunekawa
,
S.
Ito
,
T.
Mori
,
K.
Ishikawa
,
Z. Q.
Li
, and
Y.
Kawazoe
,
Phys. Rev. B
62
,
3065
(
2000
).
25.
E. K.
Akdogan
,
C. J.
Rawn
,
W. D.
Porter
,
E. A.
Payzant
, and
A.
Safari
,
J. Appl. Phys.
97
,
084305
(
2005
).
26.
I. F.
Ferguson
,
Philos. Mag.
16
,
635
(
1967
).
27.
N.
Kobayashi
,
G.
Linker
, and
O.
Meyer
,
J. Phys. F: Met. Phys.
17
,
1491
(
1987
).
28.
N. J.
Ashley
,
R. W.
Grimes
, and
K. J.
McClellan
,
J. Mater. Sci.
42
,
1884
(
2007
).
29.
A.
Zaoui
,
S.
Kacimi
,
M.
Zaoui
, and
B.
Bouhafs
,
Comput. Mater. Sci.
44
,
1071
(
2009
).
30.
I. T.
Bae
,
W. L.
Jiang
,
C. M.
Wang
,
W. J.
Weber
, and
Y. W.
Zhang
,
J. Appl. Phys.
105
,
083514
(
2009
).
31.
Y. W.
Zhang
,
M.
Ishimaru
,
J.
Jagielski
,
W. M.
Zhang
,
Z. H.
Zhu
,
L. V.
Saraf
,
W. L.
Jiang
,
L.
Thome
, and
W. J.
Weber
,
J. Phys. D: Appl. Phys.
43
,
085303
(
2010
).
You do not currently have access to this content.