Micro-nano hybrid structure (MNHS) that comprises of microcavities and nanowires is a specific class of MNHS that is considered to be ideal for two-phase boiling heat transfer applications. Realizing MNHS with electrodeposition is favorable in boiling heat transfer, but the realization has been very difficult and time-consuming to achieve. Here, we demonstrate a simple, robust, rapid, and photolithography-free route to fabricate MNHS that consists of individual microcavities and copper nanowires on a large area. We show that this MNHS can be extremely beneficial in boiling heat transfer compared to the state-of-the-art nanowire surface.

1.
G.
Ghibaudo
,
H.
Jaouen
, and
G.
Kamarinos
,
Europhys. Lett.
2
,
209
(
1986
).
2.
N. A.
Patankar
,
Soft Matter
6
,
1613
(
2010
).
3.
D.
Coso
,
V.
Srinivasan
,
M.-C.
Lu
,
J.-Y.
Chang
, and
A.
Majumdar
,
J. Heat Transfer
134
,
101501
(
2012
).
4.
R.
Chen
,
M.-C.
Lu
,
V.
Srinivasan
,
Z.
Wang
,
H. H.
Cho
, and
A.
Majumdar
,
Nano Lett.
9
,
548
(
2009
).
5.
C.
Li
,
Z.
Wang
,
P.-I.
Wang
,
Y.
Peles
,
N.
Koratkar
, and
G. P.
Peterson
,
Small
4
,
1084
(
2008
).
6.
Z.
Yao
,
Y.-W.
Lu
, and
S. G.
Kandlikar
,
Int. J. Therm. Sci.
50
,
2084
(
2011
).
7.
H. S.
Ahn
,
H. J.
Jo
,
S. H.
Kang
, and
M. H.
Kim
,
Appl. Phys. Lett.
98
,
071908
(
2011
).
8.
M.-C.
Lu
,
R.
Chen
,
V.
Srinivasan
,
V. P.
Carey
, and
A.
Majumdar
,
Nano Lett.
54
,
5359
(
2011
).
9.
D.
Li
,
G. S.
Wu
,
W.
Wang
,
Y. D.
Wang
,
D.
Liu
,
D. C.
Zhang
,
Y. F.
Chen
,
G. P.
Peterson
, and
R.
Yang
,
Nano Lett.
12
,
3385
(
2012
).
10.
B. S.
Kim
,
S.
Shin
,
S. J.
Shin
,
K. M.
Kim
, and
H. H.
Cho
,
Langmuir
27
,
10148
(
2011
).
11.
B. S.
Kim
,
S.
Shin
,
S. J.
Shin
,
K. M.
Kim
, and
H. H.
Cho
,
Nanoscale Res. Lett.
6
,
333
(
2011
).
12.
S.
Shin
,
B. H.
Kong
,
B. S.
Kim
,
K. M.
Kim
,
H. K.
Cho
, and
H. H.
Cho
,
Nanoscale Res. Lett.
6
,
467
(
2011
).
13.
S.
Shin
,
B. S.
Kim
,
K. M.
Kim
,
B. H.
Kong
,
H. K.
Cho
, and
H. H.
Cho
,
J. Mater. Chem.
21
,
17967
(
2011
).
14.
Z.
Huang
,
N.
Geyer
,
P.
Werner
,
J.
de Boor
, and
U.
Gösele
,
Adv. Mater.
23
,
285
(
2011
).
15.
A. I.
Hochbaum
,
R.
Chen
,
R. D.
Delgado
,
W.
Liang
,
E. C.
Garnett
,
M.
Najarian
,
A.
Majumdar
, and
P.
Yang
,
Nature
451
,
163
(
2008
).
16.
A.
Vlad
,
M.
Matefi-Tempfli
,
V. A.
Antohe
,
S.
Faniel
,
N.
Reckinger
,
B.
Olbrechts
,
A.
Crahay
,
V.
Bayot
,
L.
Piraux
,
S.
Melinte
, and
S.
Matefi-Tempfli
,
Small
4
,
557
(
2008
).
17.
S. E.
Jee
,
P. S.
Lee
,
B.-J.
Yoon
,
S.-H.
Jeong
, and
K.-H.
Lee
,
Chem. Mater.
17
,
4049
(
2005
).
18.
See supplementary material at http://dx.doi.org/10.1063/1.4772539 for the experimental details on the growth of copper nanowires for MNHS, heater/sensor platform for boiling experiment, test facilities for boiling experiment, calibration of wall temperature for accurate boiling heat transfer performance, and calculation of active nucleation sites.
19.
S. M.
Ghiaasiaan
,
Two-Phase Flow, Boiling and Condensation in Conventional and Miniature Systems
(
Cambridge University Press
,
New York, NY
,
2008
).
20.
C. H.
Wang
and
V. K.
Dhir
,
J. Heat Transfer
115
,
670
(
1993
).
21.
B.
Bourdon
,
R.
Rioboo
,
M.
Marengo
,
E.
Gosselin
, and
J.
De Coninck
,
Langmuir
28
,
1618
(
2012
).
22.
B. J.
Jones
,
J. P.
McHale
, and
S. V.
Garimella
,
J. Heat Transfer
131
,
121009
(
2009
).
23.
N.
Basu
,
G. R.
Warrier
, and
V. K.
Dhir
,
J. Heat Transfer
124
,
717
(
2002
).
24.
Y. Y.
Hsu
,
J. Heat Transfer
84
,
207
(
1962
).
25.
C. L.
Tien
,
Int. J. Heat Mass Transfer
5
,
533
(
1962
).
26.
C. H.
Wang
and
V. K.
Dhir
,
J. Heat Transfer
115
,
659
(
1993
).
27.
K.
Nishikawa
and
Y.
Fujita
, “
Nucleate boiling heat transfer and its augmentation
,” in
Advances in Heat Transfer
, edited by
J. P.
Hartnett
and
T. F.
Irvine
(
Academic
,
Waltham, MA
,
1990
), Vol.
20
.
28.
B.
Pokroy
,
S. H.
Kang
,
L.
Mahadevan
, and
J.
Aizenberg
,
Science
323
,
237
(
2009
).

Supplementary Material

You do not currently have access to this content.