In this Letter, we investigated the photo-response of multi wall carbon nanotube-based composites obtained from in situ thermal evaporation of noble metals (Au, Ag, and Cu) on the nanotube films. The metal deposition process produced discrete nanoparticles on the nanotube outer walls. The nanoparticle-carbon nanotube films were characterized by photo-electrochemical measurements in a standard three electrode cell. The photocurrent from the decorated carbon nanotubes remarkably increased with respect to that of bare multiwall tubes. With the aid of first-principle calculations, these results are discussed in terms of metal nanoparticle–nanotube interactions and electronic charge transfer at the interface.

1.
A.
Jorio
,
M. S.
Dresselhaus
, and
G.
Dresselhaus
,
Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties, and Applications
(
Springer
,
New York
,
2008
).
2.
J.-C.
Charlier
,
X.
Blase
, and
S.
Roche
,
Rev. Mod. Phys.
79
,
677
(
2007
).
3.
R. H.
Baughman
,
A. A.
Zakhidov
, and
W. A.
de Heer
,
Science
297
,
787
(
2002
).
4.
V.
Georgakilas
,
D.
Gournis
,
V.
Tzitzios
,
L.
Pasquato
,
D. M.
Guldi
, and
M.
Prato
,
J. Mater. Chem.
17
,
2679
(
2007
).
5.
M.
Giulianini
,
E. R.
Waclawik
,
J. M.
Bell
,
M.
Scarselli
,
P.
Castrucci
,
M.
De Crescenzi
, and
N.
Motta
,
Appl. Phys. Lett.
95
,
143116
(
2009
).
6.
X.
Guo
,
L.
Huang
,
S.
O'Brien
,
P.
Kim
, and
C.
Nuckolls
,
J. Am. Chem. Soc.
127
,
15045
(
2005
).
7.
V. M.
Rotello
,
Nanoparticles: Building Blocks for Nanotechnology
(
Kluwer Academic/Plenum
,
New York
,
2004
).
8.
G. G.
Wildgoose
,
C. E.
Banks
, and
R. G.
Compton
,
Small
2
,
182
(
2006
).
9.
A.
Goldoni
,
L.
Petaccia
,
S.
Lizzit
, and
R.
Larciprete
,
J. Phys. Condens. Matter
22
,
013001
(
2010
).
10.
Z.
Zanolli
,
R.
Leghrib
,
A.
Felten
,
J.-J.
Pireaux
,
E.
Llobet
, and
J.-C.
Charlier
,
ACS Nano
5
,
4592
(
2011
).
11.
M.
Scarselli
,
L.
Camilli
,
P.
Castrucci
,
F.
Nanni
,
S.
Del Gobbo
,
E.
Gautron
,
S.
Lefrant
, and
M.
De Crescenzi
,
Carbon
50
,
875
(
2012
).
12.
Y.
Zhang
,
N. W.
Franklin
,
R. J.
Chen
, and
H.
Dai
,
Chem. Phys. Lett.
331
,
35
(
2000
).
13.
H. J.
Kuhn
,
S. E.
Braslavsky
, and
R.
Schmidt
,
Pure Appl. Chem.
61
,
187
(
1989
).
14.
The IPCE (incident photon-to-current efficiency) was determined using the equation: IPCE(%) = i(Acm2)×1240I(Wcm2)×λ(nm)×100 where i is the short circuit photocurrent (A/cm2), I is the incident light intensity (W/cm2), and λ is the incident photon wavelength (nm). For details see
A. C.
Khazraji
,
S.
Hotchandani
,
S.
Das
, and
P. V.
Kamat
,
J. Phys. Chem. B
103
,
4693
(
1999
).
15.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
);
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
);
D. M.
Ceperley
and
B. J.
Alder
,
Phys. Rev. Lett.
45
,
566
(
1980
);
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
16.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
 et al.,
J. Phys.:Condens. Matter
21
,
395502
(
2009
).
17.
G.
Henkelman
,
A.
Arnaldsson
, and
H.
Jónsson
,
Comput. Mater. Sci.
36
,
354
(
2006
).
18.
P.
Castrucci
,
F.
Tombolini
,
M.
Scarselli
,
E.
Speiser
,
S.
Del Gobbo
,
W.
Richter
,
M.
De Crescenzi
,
M.
Diociaiuti
,
E.
Gatto
, and
M.
Venanzi
,
Appl. Phys. Lett.
89
,
253107
(
2006
).
19.
M.
Scarselli
,
C.
Scilletta
,
F.
Tombolini
,
P.
Castrucci
,
M.
Diociaiuti
,
S.
Casciardi
,
F.
Tombolini
,
E.
Gatto
,
M.
Venanzi
, and
M.
De Crescenzi
,
J. Phys. Chem. C
113
,
5860
(
2009
).
20.
M.
Scarselli
,
P.
Castrucci
,
L.
Camilli
,
S.
Del Gobbo
,
S.
Casciardi
,
F.
Tombolini
,
E.
Gatto
,
M.
Venanzi
, and
M.
De Crescenzi
,
Nanotechnology
22
,
035701
(
2011
).
21.
I.
Robel
,
B. A.
Bunker
, and
P. V.
Kamat
,
Adv. Mater.
17
,
2458
(
2005
).
22.
K.
Kong
,
S.
Han
, and
J.
Ihm
,
Phys. Rev. B
60
,
6074
(
1999
).
You do not currently have access to this content.