Kesterite solar cells show the highest efficiency when the absorber layers (Cu2ZnSnS4 [CZTS], Cu2ZnSnSe4 [CZTSe] and their alloys) are non-stoichiometric with Cu/(Zn+Sn)0.8 and Zn/Sn1.2. The fundamental cause is so far not understood. Using a first-principles theory, we show that passivated defect clusters such as CuZn+SnZn and 2CuZn+SnZn have high concentrations even in stoichiometric samples with Cu/(Zn+Sn) and Zn/Sn ratios near 1. The partially passivated CuZn+SnZn cluster produces a deep donor level in the band gap of CZTS, and the fully passivated 2CuZn+SnZn cluster causes a significant band gap decrease. Both effects are detrimental to photovoltaic performance, so Zn-rich and Cu, Sn-poor conditions are required to prevent their formation and increase the efficiency. The donor level is relatively shallower in CZTSe than in CZTS, which gives an explanation to the higher efficiency obtained in Cu2ZnSn(S,Se)4 (CZTSSe) cells with high Se content.

1.
T. K.
Todorov
,
K. B.
Reuter
, and
D. B.
Mitzi
,
Adv. Mater.
22
,
E156
(
2010
).
2.
K.
Wang
,
O.
Gunawan
,
T.
Todorov
,
B.
Shin
,
S. J.
Chey
,
N. A.
Bojarczuk
,
D.
Mitzi
, and
S.
Guha
,
Appl. Phys. Lett.
97
,
143508
(
2010
).
3.
W.
Ki
and
H. W.
Hillhouse
,
Adv. Energy Mater.
1
,
732
(
2011
).
4.
D.
Barkhouse
,
O.
Gunawan
,
T.
Gokmen
,
T.
Todorov
, and
D.
Mitzi
,
Prog. Photovoltaics
20
,
6
(
2012
).
5.
S.
Bag
,
O.
Gunawan
,
T.
Gokmen
,
Y.
Zhu
,
T. K.
Todorov
, and
D. B.
Mitzi
,
Energy Environ. Sci.
5
,
7060
(
2012
).
6.
I.
Repins
,
C.
Beall
,
N.
Vora
,
C.
DeHart
,
D.
Kuciauskas
,
P.
Dippo
,
B.
To
,
J.
Mann
,
W.-C.
Hsu
,
A.
Goodrich
 et al.,
Sol. Energy Mater. Sol. Cells
101
,
154
(
2012
).
7.
S.
Ahn
,
S.
Jung
,
J.
Gwak
,
A.
Cho
,
K.
Shin
,
K.
Yoon
,
D.
Park
,
H.
Cheong
, and
J. H.
Yun
,
Appl. Phys. Lett.
97
,
021905
(
2010
).
8.
S. G.
Choi
,
H. Y.
Zhao
,
C.
Persson
,
C. L.
Perkins
,
A. L.
Donohue
,
B.
To
,
A. G.
Norman
,
J.
Li
, and
I. L.
Repins
,
J. Appl. Phys.
111
,
033506
(
2012
).
9.
F.
Luckert
,
D. I.
Hamilton
,
M. V.
Yakushev
,
N. S.
Beattie
,
G.
Zoppi
,
M.
Moynihan
,
I.
Forbes
,
A. V.
Karotki
,
A. V.
Mudryi
,
M.
Grossberg
 et al.,
Appl. Phys. Lett.
99
,
062104
(
2011
).
10.
X.
Fontane
,
L.
Calvo-Barrio
,
V.
Izquierdo-Roca
,
E.
Saucedo
,
A.
Perez-Rodriguez
,
J. R.
Morante
,
D. M.
Berg
,
P. J.
Dale
, and
S.
Siebentritt
,
Appl. Phys. Lett.
98
,
181905
(
2011
).
11.
A.
Redinger
,
K.
Hoenes
,
X.
Fontane
,
V.
Izquierdo-Roca
,
E.
Saucedo
,
N.
Valle
,
A.
Perez-Rodriguez
, and
S.
Siebentritt
,
Appl. Phys. Lett.
98
,
101907
(
2011
).
12.
J.
Just
,
D.
Luetzenkirchen-Hecht
,
R.
Frahm
,
S.
Schorr
, and
T.
Unold
,
Appl. Phys. Lett.
99
,
262105
(
2011
).
13.
T.
Tanaka
,
T.
Sueishi
,
K.
Saito
,
Q.
Guo
,
M.
Nishio
,
K. M.
Yu
, and
W.
Walukiewicz
,
J. Appl. Phys.
111
,
053522
(
2012
).
14.
K.
Tanaka
,
Y.
Fukui
,
N.
Moritake
, and
H.
Uchiki
,
Sol. Energy Mater. Sol. Cells
95
,
838
(
2011
).
15.
B.
Shin
,
O.
Gunawan
,
Y.
Zhu
,
N. A.
Bojarczuk
,
S. J.
Chey
, and
S.
Guha
, “
Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber
,”
Prog. Photovoltaics
(to be published).
16.
T.
Todorov
,
O.
Gunawan
,
S. J.
Chey
,
T. G.
de Monsabert
,
A.
Prabhakar
, and
D. B.
Mitzi
,
Thin Solid Films
519
,
7378
(
2011
).
17.
H.
Katagiri
,
K.
Jimbo
,
M.
Tahara
,
H.
Araki
, and
K.
Oishi
,
Mater. Res. Soc. Symp. Proc.
1165
,
1165
M04
(
2009
).
18.
A.
Ennaoui
,
M.
Lux-Steiner
,
A.
Weber
,
D.
Abou-Ras
,
I.
Koetschau
,
H. W.
Schock
,
R.
Schurr
,
A.
Hoelzing
,
S.
Jost
,
R.
Hock
 et al.,
Thin Solid Films
517
,
2511
(
2009
).
19.
S.-H.
Wei
and
S. B.
Zhang
,
J. Phys. Chem. Solids
66
,
1994
(
2005
).
20.
S.
Lany
and
A.
Zunger
,
Phys. Rev. Lett.
100
,
016401
(
2008
).
21.
S.
Chen
,
X. G.
Gong
,
A.
Walsh
, and
S.-H.
Wei
,
Appl. Phys. Lett.
96
,
021902
(
2010
).
22.
S.
Chen
,
J.-H.
Yang
,
X. G.
Gong
,
A.
Walsh
, and
S.-H.
Wei
,
Phys. Rev. B
81
,
245204
(
2010
).
23.
K.
Biswas
,
S.
Lany
, and
A.
Zunger
,
Appl. Phys. Lett.
96
,
201902
(
2010
).
24.
S.
Levcenko
,
N.
Syrbu
,
E.
Arushanov
,
V.
Tezlevan
,
R.
Fernandez-Ruiz
,
J.
Merino
, and
M.
Leon
,
J. Appl. Phys.
99
,
073513
(
2006
).
25.
G.
Marin
,
S.
Wasim
,
C.
Rincon
,
G.
Perez
,
P.
Bocaranda
,
I.
Molina
,
R.
Guevara
, and
J.
Delgado
,
J. Appl. Phys.
95
,
8280
(
2004
).
26.
S.-H.
Wei
and
Y.
Yan
,
Overcoming Bipolar Doping Difficulty in Wide Gap Semiconductors
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
2011
), pp.
213
239
.
27.
S. B.
Zhang
,
S.-H.
Wei
,
A.
Zunger
, and
H.
Katayama-Yoshida
,
Phys. Rev. B
57
,
9642
(
1998
).
28.
G.
Kresse
and
J.
Furthmuller
,
Phys. Rev. B
54
,
11169
(
1996
).
29.
S.
Lany
and
A.
Zunger
,
Phys. Rev. B
72
,
035215
(
2005
).
30.
A.
Nagoya
,
R.
Asahi
,
R.
Wahl
, and
G.
Kresse
,
Phys. Rev. B
81
,
113202
(
2010
).
31.
S.
Chen
,
X. G.
Gong
,
A.
Walsh
, and
S.-H.
Wei
,
Phys. Rev. B
79
,
165211
(
2009
).
32.
A.
Walsh
and
G. W.
Watson
,
Phys. Rev. B
70
,
235114
(
2004
).
33.
S.
Chen
,
X. G.
Gong
,
A.
Walsh
, and
S.-H.
Wei
,
Appl. Phys. Lett.
94
,
041903
(
2009
).
34.
J.
Paier
,
R.
Asahi
,
A.
Nagoya
, and
G.
Kresse
,
Phys. Rev. B
79
,
115126
(
2009
).
35.
S.
Botti
,
D.
Kammerlander
, and
M. A. L.
Marques
,
Appl. Phys. Lett.
98
,
241915
(
2011
).
You do not currently have access to this content.