Overcoming challenges associated with implementation of resistive random access memory technology for non-volatile information storage requires identifying the material characteristics responsible for resistive switching. In order to connect the switching phenomenon to the nano-scale morphological features of the dielectrics employed in memory cells, we applied the enhanced conductive atomic force microscopy technique for in situ analysis of the simultaneously collected electrical and topographical data on HfO2 stacks of various degrees of crystallinity. We demonstrate that the resistive switching is a local phenomenon associated with the formation of a conductive filament with a sufficiently small cross-section, which is determined by the maximum passing current. Switchable filament is found to be formed at the dielectric sites where the forming voltages were sufficiently small, which, in the case of the stoichiometric HfO2, is observed exclusively at the grain boundary regions representing low resistant conductive paths through the dielectric film.

1.
R.
Waser
,
R.
Dittmann
,
G.
Staikov
, and
K.
Szot
,
Adv. Mater.
21
,
2632
2663
(
2009
).
2.
S. H.
Chang
,
S. B.
Lee
,
D. Y.
Jeon
,
S. J.
Park
,
G. T.
Kim
,
S. M.
Yang
,
S. C.
Chae
,
H. K.
Yoo
,
B. S
,
Kang
,
M. J.
Lee
, and
T. W.
Noh
,
Adv. Mater.
23
,
4063
4067
(
2011
).
3.
C.
Rohde
,
B. J.
Choi
,
D. S.
Jeong
,
S.
Choi
,
J. S.
Zhao
, and
C. S.
Hwang
,
Appl. Phys. Lett.
86
,
262907
(
2005
).
4.
C.
Rossel
,
G. I.
Meijer
,
D.
Bremaud
, and
D.
Widmer
,
J. Appl. Phys.
90
,
2892
(
2001
).
5.
I. G.
Baek
,
M. S.
Lee
,
S.
Seo
,
M. J.
Lee
,
D. H.
Seo
,
D. S.
Suh
,
J. C.
Park
,
S. O.
Park
,
H. S.
Kim
,
I. K.
Yoo
,
U. I.
Chung
, and
J. T.
Moon
, in
Technical Digest—International Electron Devices Meeting
(IEEE,
2004
), p.
587
.
6.
S.
Lee
,
W. G.
Kim
,
S. W.
Rhee
, and
K.
Yong
,
J. Electrochem. Soc.
155
(
2
),
H92
H96
(
2008
).
7.
S. J.
Choi
,
G. S.
Park
,
K. H.
Kim
,
S.
Cho
,
W. Y.
Yang
,
X. S.
Li
,
J. H.
Moon
,
K. J.
Lee
, and
K.
Kim
,
Adv. Mater.
23
,
3272
3277
(
2011
).
8.
S.
Long
,
C.
Cagli
,
D.
Ielmini
,
M.
Liu
, and
J.
Suñe
,
IEEE Electron Device Lett.
32
,
1570
1572
(
2011
).
9.
Z.
Yan
,
Y.
Guo
,
G.
Zhang
, and
J. M.
Liu
,
Adv. Mater.
23
,
1351
1355
(
2011
).
10.
P. S.
Lysaght
,
J. C.
Woicik
,
M. A.
Sahiner
,
S. C.
Song
,
B. H.
Lee
, and
R.
Jammy
,
J. Non-Cryst. Solids
354
(
2-9
),
399
403
(
2008
).
11.
P. S.
Lysaght
,
J. C.
Woicik
,
M. A.
Sahiner
,
B. H.
Lee
, and
R.
Jammy
,
Appl. Phys. Lett.
91
,
122910
(
2007
).
12.
X.
Blasco
,
M.
Nafria
, and
X.
Aymerich
,
Rev. Sci. Instrum.
76
,
016105
(
2005
).
13.
J.
Pétry
,
W.
Vandervorst
,
O.
Richard
,
T.
Conard
,
P.
DeWolf
,
V.
Kaushik
,
A.
Delabie
, and
S.
Van Elshocht
, in Integration of Advanced Micro-and Nanoelectronic Devices-Critical Issues and Solutions, edited by
J.
Morais
,
D.
Kumar
,
M.
Houssa
,
R. K.
Singh
,
D.
Landheer
,
R.
Ramesh
,
R. M.
Wallace
,
S.
Guha
, and
H.
Koinuma
(
Mater. Res. Soc. Symp. Proc.
,
2004
), Vol.
811
, pp.
D6
10
01
D6
10
06
.
14.
V.
Iglesias
,
M.
Porti
,
M.
Nafría
,
X.
Aymerich
,
P.
Dudek
,
T.
Schroeder
, and
G.
Bersuker
,
Appl. Phys. Lett.
97
,
262906
(
2010
).
15.
M.
Porti
,
M.
Nafria
,
M. C.
Blum
,
X.
Aymerich
, and
S.
Sadewasser
,
Appl. Phys. Lett.
81
,
3615
3617
(
2002
).
16.
G.
Bersuker
,
J.
Yum
,
L.
Vandelli
,
A.
Padovani
,
L.
Larcher
,
V.
Iglesias
,
M.
Porti
,
M.
Nafría
,
K.
McKenna
,
A.
Shluger
,
P.
Kirsch
, and
R.
Jammy
,
Solid-State Electron.
65–66
,
146
150
(
2011
).
17.
V.
Iglesias
,
M.
Lanza
,
K.
Zhang
,
A.
Bayerl
,
M.
Porti
,
M.
Nafría
,
X.
Aymerich
,
G.
Benstteter
,
Z. Y.
Shen
, and
G.
Bersuker
,
Appl. Phys. Lett.
99
,
103510
(
2011
).
18.
L.
Aguilera
,
W.
Polspoel
,
A.
Volodin
,
C.
Van Haesendonck
,
M.
Porti
,
W.
Vandervorst
,
M.
Nafria
, and
X.
Aymerich
, in
International Reliability Physics Symposium
(IEEE,
2008
), pp.
657
658
.
19.
V.
Cosnier
,
P.
Besson
,
V.
Loup
,
L.
Vandroux
,
S.
Minoret
,
M.
Cassé
,
X.
Garros
,
J. M.
Pedini
,
S.
Lhostis
,
K.
Dabertrand
,
C.
Morin
,
C.
Wiemer
,
M.
Perego
, and
M.
Fanciulli
,
Microelectron. Eng.
84
,
1886
1889
(
2007
).
20.
F.
Bohra
,
B.
Jiang
, and
J. M.
Zuo
,
Appl. Phys. Lett.
90
,
161917
(
2007
).
21.
G.
Bersuker
,
D. C.
Gilmer
,
D.
Veksler
,
J.
Yum
,
H.
Park
,
S.
Lian
,
L.
Vandelli
,
A.
Padovani
,
L.
Larcher
,
K.
McKenna
,
A.
Shluger
,
V.
Iglesias
,
M.
Porti
,
M.
Nafría
,
W.
Taylor
,
P. D.
Kirsch
, and
R.
Jammy
, in
Technical Digest—International Electron Devices Meeting
(IEEE,
2010
), pp.
456
459
.
22.
K.
McKenna
and
A.
Shluger
,
Appl. Phys. Lett.
95
,
222111
(
2009
).
23.
L.
Vandelli
,
A.
Padovani
,
L.
Larcher
,
R. G.
Southwick
 III
,
W. B.
Knowlton
, and
G.
Bersuker
,
IEEE Trans. Electron Devices
58
,
2878
2887
(
2011
).
24.
G.
Bersuker
,
D. C.
Gilmer
,
D.
Veksler
,
P.
Kirsch
,
L.
Vandelli
,
A.
Padovani
,
L.
Larcher
,
K.
McKenna
,
A.
Shluger
,
V.
Iglesias
,
M.
Porti
, and
M.
Nafria
,
J. Appl. Phys.
110
,
124518
(
2011
).
You do not currently have access to this content.