Electron energy-loss spectroscopy (EELS) studies in scanning transmission electron microscopy are widely used to investigate the location and bonding of atoms in condensed matter. However, the interpretation of EELS data is complicated by multiple elastic and thermal diffuse scattering of the probing electrons. Here, we present a method for removing these effects from recorded EELS spectrum images, producing visually interpretable elemental maps and enabling direct comparison of the spectral data with established first-principles energy-loss fine structure calculations.

1.
D. A.
Muller
,
L.
Fitting Kourkoutis
,
M.
Murfitt
,
J. H.
Song
,
H. Y.
Hwang
,
J.
Silcox
,
N.
Dellby
, and
O. L.
Krivanek
,
Science
319
,
1073
(
2008
).
2.
M.
Varela
,
M. P.
Oxley
,
W.
Luo
,
J.
Tao
,
M.
Watanabe
,
A. R.
Lupini
,
S. T.
Pantelides
, and
S. J.
Pennycook
,
Phys. Rev. B
79
,
085117
(
2009
).
3.
J.
Gazquez
,
W.
Luo
,
M. P.
Oxley
,
M.
Prange
,
M. A.
Torija
,
M.
Sharma
,
C.
Leighton
,
S. T.
Pantelides
,
S. J.
Pennycook
, and
M.
Varela
,
Nano Lett.
11
,
973
(
2011
).
4.
H.
Tan
,
S.
Turner
,
E.
Yücelen
,
J.
Verbeeck
, and
G.
Van Tendeloo
,
Phys. Rev. Lett.
107
,
107602
(
2011
).
5.
M.
Haruta
,
K.
Kurashima
,
T.
Nagai
,
H.
Komatsu
,
Y.
Shimakawa
,
H.
Kurata
, and
K.
Kimoto
,
Appl. Phys. Lett.
100
,
163107
(
2012
).
6.
J. A.
Mundy
,
Q.
Mao
,
C. M.
Brooks
,
D. G.
Schlom
, and
D. A.
Muller
,
Appl. Phys. Lett.
101
,
042907
(
2012
).
7.
B. D.
Forbes
,
A. J.
D'Alfonso
,
R. E. A.
Williams
,
R.
Srinivasan
,
H. L.
Fraser
,
D. W.
McComb
,
B.
Freitag
,
D. O.
Klenov
, and
L. J.
Allen
,
Phys. Rev. B
86
,
024108
(
2012
).
8.
C.
Witte
,
S. D.
Findlay
,
M. P.
Oxley
,
J. J.
Rehr
, and
L. J.
Allen
,
Phys. Rev. B
80
,
184108
(
2009
).
9.
R. F.
Egerton
,
Electron Energy-Loss Spectroscopy in the Electron Microscope
(
Plenum
,
New York
,
1996
).
10.
L. J.
Allen
,
S. D.
Findlay
,
M. P.
Oxley
, and
C. J.
Rossouw
,
Ultramicroscopy
96
,
47
(
2003
).
11.
S. D.
Findlay
,
M. P.
Oxley
, and
L. J.
Allen
,
Microsc. Microanal.
14
,
48
(
2008
).
12.
To simulate EELS images when the detector collection aperture is smaller than the probe-forming aperture requires a more general (and more complicated) expression.22 However, recent technological advances have allowed acceptance angles that collect the majority of the inelastically scattered electrons, validating the simpler so-called “local” expression used here.11 
13.
P. D.
Nellist
and
S. J.
Pennycook
,
J. Microsc.
190
,
159
(
1998
).
14.
A. J.
McGibbon
,
S. J.
Pennycook
, and
D. E.
Jesson
,
J. Microsc.
195
,
44
(
1999
).
15.
B. D.
Forbes
,
A. V.
Martin
,
S. D.
Findlay
,
A. J.
D'Alfonso
, and
L. J.
Allen
,
Phys. Rev. B
82
,
104103
(
2010
).
16.
W.
Press
,
B.
Flannery
,
S.
Teukolsky
, and
W.
Vetterling
,
Numerical Recipes in FORTRAN 77
, Fortran Numerical Recipes (
Cambridge University Press
,
Cambridge
,
1992
).
17.
P. C.
Hansen
,
Discrete Inverse Problems
(
Society for Industrial and Applied Mathematics
,
Philadelphia
,
2010
).
18.
See supplementary material at http://dx.doi.org/10.1063/1.4765657 for both gray scale and color versions of the full movie.
19.
P.
Cueva
,
R.
Hovden
,
J. A.
Mundy
,
H. L.
Xin
, and
D. A.
Muller
,
Microsc. Microanal.
18
,
667
(
2012
).
20.
M. S.
Moreno
,
K.
Jorissen
, and
J. J.
Rehr
,
Micron
38
,
1
(
2007
).
22.
The WIEN2K calculations, assuming an incident plane wave but the full detector geometry to be consistent with the inverted data, were based on a local density approximation (LDA) with a Hubbard-like, localized term added to the LDA density functional (LDA + U) for the Cu-3d orbital. A core-hole was introduced at the oxygen sites and the calculated spectra were shifted to get best agreement with experiment.

Supplementary Material

You do not currently have access to this content.