Hexagonal boron nitride (hBN) epilayers have been synthesized by metal organic chemical vapor deposition and their dielectric strength, optical absorption, and potential as a deep ultraviolet (DUV) detector material have been studied. Based on the graphene optical absorption concept, the estimated band-edge absorption coefficient of hBN is about 7 × 105/cm, which is more than 3 times higher than the value for wurtzite AlN (∼2 × 105 /cm). The dielectric strength of hBN epilayers exceeds that of AlN and is greater than 4.4 MV/cm based on the measured result for an hBN epilayer released from the host sapphire substrate. The hBN epilayer based DUV detectors exhibit a sharp cut-off wavelength around 230 nm, which coincides with the band-edge photoluminescence emission peak and virtually no responses in the long wavelengths. Based on the present study, we have identified several advantageous features of hBN DUV photodetectors: (1) low long wavelength response or high DUV to visible rejection ratio; (2) requiring very thin active layers due to high optical absorption; (3) high dielectric strength and chemical inertness and resistance to oxidation and therefore suitable for applications in extreme conditions; (4) high prospects of achieving flexible devices; and (5) possible integration with graphene optoelectronics due to their similar structures and lattice constants.

1.
S. L.
Rumyantsev
,
M. E.
Levinshtein
,
A. D.
Jackson
,
S. N.
Mohammmad
,
G. L.
Harris
,
M. G.
Spencer
, and
M. S.
Shur
, in
Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe
, edited by
M. E.
Levinshtein
,
S. L.
Rumyantsev
, and
M. S.
Shur
(
John Wiley & Sons, Inc
.,
New York
,
2001
), pp.
67
92
.
2.
Y.
Kubota
,
K.
Watanabe
,
O.
Tsuda
, and
T.
Taniguchi
,
Science
317
,
932
(
2007
).
3.
T.
Sugino
,
K.
Tanioka
,
S.
Kawasaki
, and
J.
Shirafuji
,
Jpn. J. Appl. Phys., Part 2
36
,
L463
(
1997
).
4.
J.
Li
,
R.
Dahal
,
S.
Majety
,
J. Y.
Lin
, and
H. X.
Jiang
,
Nucl. Instrum. Methods Phys. Res. A
654
,
417
(
2011
).
5.
L.
Song
,
L.
Ci
,
H.
Lu
,
P. B.
Sorokin
,
C.
Jin
,
J.
Ni
,
A. G.
Kvashnin
,
D. G.
Kvashnin
,
J.
Lou
,
B. I.
Yakobson
, and
P. M.
Ajayan
,
Nano Lett.
10
,
3209
(
2010
).
6.
R. V.
Gorbachev
,
I.
Riaz
,
R. R.
Nair
,
R.
Jalil
,
L.
Britnell
,
B. D.
Belle
,
E. W.
Hill
,
K. S.
Novoselov
,
K.
Watanabe
,
T.
Taniguchi
,
A. K.
Geim
, and
P.
Blake
,
Small
7
,
465
(
2011
).
7.
Y.
Shi
,
C.
Hamsen
,
X.
Jia
,
K. K.
Kim
,
A.
Reina
,
M.
Hofmann
,
A. L.
Hsu
,
K.
Zhang
,
H.
Li
,
Zy.
Juang
,
M. S.
Dresselhaus
,
L. J.
Li
, and
J.
Kong
,
Nano Lett.
10
,
4134
(
2010
).
8.
N.
Alem
,
R.
Erni
,
C.
Kisielowski
,
M. D.
Rossell
,
W.
Gannett
, and
A.
Zettl
,
Phys. Rev. B
80
,
155425
(
2009
).
9.
C. R.
Dean
,
A. F.
Young
,
I.
Meric
,
C.
Lee
,
L.
Wang
,
S.
Sorgenfrei
,
K.
Watanabe
,
T.
Taniguchi
,
P.
Kim
,
K. L.
Shepard
, and
J.
Hone
,
Nat. Nanotechnol.
5
,
722
(
2010
).
10.
K.
Watanabe
,
T.
Taniguchi
, and
H.
Kanda
,
Nature Photon.
3
,
591
(
2009
).
11.
T.
Taniguchi
and
K.
Watanabe
,
J. Cryst. Growth
303
,
525
(
2007
).
12.
K.
Watanabe
,
T.
Taniguchi
,
T.
Kuroda
,
O.
Tsuda
, and
H.
Kanda
,
Diamond Relat. Mater.
17
,
830
(
2008
).
13.
K.
Watanabe
and
T.
Tanniguchi
,
Phys. Rev. B
79
,
193104
(
2009
).
14.
K.
Watanabe
and
T.
Taniguchi
,
Int. J. Appl. Ceram. Technol.
8
,
977
(
2011
).
15.
R.
Dahal
,
J.
Li
,
S.
Majety
,
B. N.
Pantha
,
X. K.
Cao
,
J. Y.
Lin
, and
H. X.
Jiang
,
Appl. Phys. Lett.
98
,
211110
(
2011
).
16.
S.
Majety
,
J.
Li
,
X. K.
Cao
,
R.
Dahal
,
B. N.
Pantha
,
J. Y.
Lin
, and
H. X.
Jiang
,
Appl. Phys. Lett.
100
,
061121
(
2012
).
17.
S.
Majety
,
X. K.
Cao
,
J.
Li
,
R.
Dahal
,
J. Y.
Lin
, and
H. X.
Jiang
,
Appl. Phys. Lett.
101
,
051110
(
2012
).
18.
K. B.
Nam
,
J.
Li
,
M. L.
Nakarmi
,
J. Y.
Lin
, and
H. X.
Jiang
,
Appl. Phys. Lett.
82
,
1694
(
2003
).
19.
J.
Li
,
K. B.
Nam
,
M. L.
Nakarmi
,
J. Y.
Lin
,
H. X.
Jiang
,
P.
Carrier
, and
S.-H.
Wei
,
Appl. Phys. Lett.
83
,
5163
(
2003
).
20.
B. N.
Pantha
,
R.
Dahal
,
M. L.
Nakarmi
,
N.
Nepal
,
J.
Li
,
J. Y.
Lin
,
H. X.
Jiang
,
Q. S.
Paduano
, and
D.
Weyburne
,
Appl. Phys. Lett.
90
,
241101
(
2007
).
21.
R. W.
Lynch
and
H. G.
Drickamer
,
J. Chem. Phys.
44
,
181
(
1966
).
22.
Y.
Kobayashi
,
T.
Akasaka
, and
T.
Makimoto
,
J. Cryst. Growth
310
,
5048
(
2008
).
23.
B.
Huang
,
H. X.
Jiang
,
X. K.
Cao
,
J. Y.
Lin
, and
S.-H.
Wei
,
Phys. Rev. B
86
,
155202
(
2012
).
24.
L.
Museur
,
G.
Brasse
,
A.
Pierret
,
S.
Maine
,
B.
Attal-Trétout
,
F.
Ducastelle
,
A.
Loiseau
,
J.
Barjon
,
K.
Watanabe
,
T.
Taniguch
, and
A.
Kanaev
,
Phys. Status Solidi (RRL)
5
,
214
(
2011
).
25.
B.
Arnaud
,
S.
Lebègue
,
P.
Rabiller
, and
M.
Alouani
,
Phys. Rev. Lett.
96
,
026402
(
2006
).
26.
P. K.
Basu
,
Theory of Optical Processes in Semiconductors: Bulk and Microstructures
(
Clarendon
,
Oxford
1997
).
27.
P. B.
Perry
and
R. F.
Rutz
,
Appl. Phys. Lett.
33
,
319
(
1978
).
28.
H.
Demiryont
,
L. R.
Thompson
, and
G. J.
Collins
,
Appl. Opt.
25
,
1311
(
1986
).
29.
R. R.
Nair
,
P.
Blake
,
A. N.
Grigorenko
,
K. S.
Novoselov
,
T. J.
Booth
,
T.
Stauber
,
N. M. R.
Peres
, and
A. K.
Geim
,
Science
320
,
1308
(
2008
).
30.
J.
Li
,
Z. Y.
Fan
,
R.
Dahal
,
M. L.
Nakarmi
,
J. Y.
Lin
, and
H. X.
Jiang
,
Appl. Phys. Lett.
89
,
213510
(
2006
).
31.
R.
Dahal
,
T. M.
Al Tahtamouni
,
J. Y.
Lin
, and
H. X.
Jiang
,
Appl. Phys. Lett.
91
,
243503
(
2007
).
32.
D. V.
Lang
, in
Deep Centers in Semiconductors
, edited by
S. T.
Pantelides
(
Gordon and Breach
,
New York
,
1986
), p.
489
.
33.
H. X.
Jiang
and
J. Y.
Lin
,
Phys. Rev. B
40
,
10025
(
1989
).
34.
G. H.
Lee
,
Y. J.
Yu
,
C.
Lee
,
C.
Dean
,
K. L.
Shepard
,
P.
Kim
, and
J.
Hone
,
Appl. Phys. Lett.
99
,
243114
(
2011
).
35.
Y.
Kobayashi
,
K.
Kumakura
,
T.
Akasaka
, and
T.
Makimoto
,
Nature
484
,
223
(
2012
).
You do not currently have access to this content.